

SPS-LHC transfer losses

L. Medina, H. Timko BE-RF-FB

LIU-SPS BD WG meeting 24 Ocotober 2019

Thanks to: A. Lasheen, M. Schwarz, D. Amorim

Introduction

- Voltage reduction campaign in the LHC due to beam-loading
- SPS-LHC injection losses and at flat-bottom (FB)

Procedure

- 1. Benchmark with SPS model
- 2. Bunch generation in the SPS: present and future
- 3. Injection into the LHC: results with and without energy offsets and discussion

Benchmark

Bunch generation in the SPS: present and future

Parameter	Unit	Present	Future
Bunch intensity	10 ¹¹ ppb	1.15	2.30
No. bunches per train	1	48b (BCMS)	72b (STD)
RF voltage V_{200}/V_{800}	MV	7/1.24	10/1.50
Ave. bunch length $\tau_{4\sigma}^{\rm FWHM}$	ns	1.55, 1.65, 1.75	1.55, 1.65, 1.75

Bunch generation matched to the RF bucket with intensity effects

- Binominal with $\mu = 2$
- Two cases with shorter/longer bunches lengths w.r.t. to the nominal $\tau_{4\sigma}^{\rm EVHM}=1.65\,{\rm ns}~@$ extraction are studied to get error bars
- Present and future SPS impedance models (latest GitLab version)
- 10^5 macroparticles per bunch are tracked for $5 imes10^3$ turns ($\sim115\,{
 m ms}$)
 - To check that the distribution is matched
 - Convergence studies (e.g. on the no. of macroparticles) are needed
- Q20 optics (γ_t = 22.80)

LHC and HL-LHC

Parameter	Unit	LHC	HL-LHC
Bunch intensity	$10^{11}{ m ppb}$	1.15	2.30
No. bunches per train	1	48b (BCMS)	72b (STD)
RF voltage V_{400}	MV	3, 4, 6	5, 6, 8

- Tracked bunches in the SPS are injected into the LHC:
 - Without injection offset: the average bunch position corresponds to the centre of the LHC bucket
 - With a 50MeV-injection offset
- Present and future LHC impedance models (ABP database)
- Quantify losses (based on the separatrix w/o intensity effects in both cases):
 - At injection: first turn
 - At flat bottom: after $5 imes 10^3$ turns (\sim 445 ms)

LHC and future (no injection offset)

• HL-LHC performs better than expected (why?)

SPS beam-loading patterns

SPS beam-loading patterns

Injection into the LHC (4 MV)

Injection into the HL-LHC (5 MV)

Future (5 MV)

50MeV injection offset

LHC, 0MeV LHC, 50MeV

HL-LHC, 0MeV HL-LHC, 50MeV

Injection vs flat-bottom (no injection offset)

LHC, inj LHC, FB

HL-LHC, inj HL-LHC, FB

Conclusions and discussion

- Dominated by capture losses (first impression)
- Convergence studies: number of macroparticles
- HL-LHC scenario performs better than expected (why? if it is confirmed)
 - More uniform beam-loading pattern?
- Study dependence on the distribution profile
- Does the SPS model need improvement?

home.cern

LHC and HL-LHC impedance models

Injection vs flat-bottom (50MeV injection offset)

LHC, inj LHC, FB

HL-LHC, inj HL-LHC, FB

home.cern