HOMs at 915MHz in the SPS cavities

P. Kramer

913.5 Patrick Kramer

Recap

- The new Fundamental Power Couplers (FPCs) also couple to the HOMs around 915 MHz
- Impedance of the 915 MHz HOMs depends on the termination of the FPCs

- Impedance increase due to both Q and R/Q
- R/Q doubles (short-> open)
- Qs around 5k-20k

2

• Part 1

Outline

- Characterisation of cavity termination at 915 MHz as present in the SPS tunnel
- Part 2
 - Approaches to improved damping of HOMs at 915 MHz

Part 1

Characterisation of cavity termination at 915 MHz

Characterisation of cavity terminations

CERN

- What do <u>water-load</u> and <u>feeder-line & amplifier</u> look like to the cavity at 915 MHz ?
- Characterisation of their (electrical) impedance required
- Coupling of the new <u>FPCs</u> needs to be characterised in detail as well

Characterisation of the new FPCs

- The TE_{11} cut-off frequencies f_c of the coaxial coupler are below 915 MHz
 - \rightarrow Possible coupling also to TE₁₁ mode (in addition to TEM)
- Especially the TE11 modes (2 polarisations) couple to 915 MHz

Characterisation of the water-loads

- So far, merely S₁₁ of the TEM-mode can be measured
 - Fairly good match at 630 & 915 MHz for TEM mode
- Measurement of TE₁₁-mode would require...
 - ... reliable mode selective excitation/ coupler
 - ... TEM-TE₁₁ mode converter

Characterisation of the water-loads

- So far, merely S₁₁ of the TEM-mode can be measured
 - Fairly good match at 630 & 915 MHz
- Measurement of TE₁₁-mode would require...
 - ... reliable mode selective excitation/ coupler
 - ... TEM-TE₁₁ mode converter
- S₁₁ of the TE₁₁-mode can be simulated
 - Correct modelling of the dielectric and conductive properties of the water difficult
 - Merely rough agreement with measurements

915 MHz

Characterisation of the water-loads

- So far, merely S₁₁ of the TEM-mode can be measured
 - Fairly good match at 630 & 915 MHz
- Measurement of TE₁₁-mode would require...
 - ... reliable mode selective excitation/ coupler
 - ... TEM-TE₁₁ mode converter
- S_{11} of the TE_{11} -mode can be simulated
 - Correct modelling of the dielectric and conductive properties of the water difficult
 - Reliability of simulations questionable
 - Simulated TE₁₁ S₁₁≈0.2dB at 915 MHz

Characterisation of the feeder lines

- RF input of cavity is connected via >100m long coaxial feeder-lines to the amplifiers on the surface
- Characterisation of feeder-lines via simulations:
 - f_{c,TE11}=393MHz, f_{c,TE21}=771MHz
 - Attenuation at 915MHz: 0.34dB/100m
 - v_{g,TE11}=0.86c, round-trip delay: 0.78μs
- Characterisation regarding the TE₁₁-mode by measurements would again require additional hardware (mode-converter etc.)
 - y-chamber, hybrid, amplifier

Part 2

Improved damping of HOMs at 915 MHz

Enforcing a defined termination - standing

- Make 915MHz <u>fully standing wave</u>
 - The FPC termination at 915MHz can be defined by a stub on the FPCs
 - Correct positioning of the stub required to ensure phase leading to lowest impedance

Enforcing a defined termination

- Make 915MHz fully travelling wave
 - A broadband match to 915MHz can be realised via the endplate-ports
 - First look at impact on FPB seems acceptable
 - Impedance still dependent on FPC-termination (simulations on-going)

Improved damping by posts in VPPs (vacuum pumping ports)

CERN

- Posts in bottom of cavity can act as a counter-weight to the numerous HOM couplers at the top
 - Damping performance most likely dependent on FPC termination (simulations on-going)
 - x3 damping for short-termination on FPCs

Concluding remarks

- For a precise evaluation of the impedance situation at 915 MHz RF measurements are required
 - Requires design & implementation of a TEM-TE₁₁ converter
- Improved damping of 915MHz HOMs seems feasible for the standing wave case