00 000 0 000 0	ntroduction & Background	Implementation	Results	HPCBatch Cluster	Conclusion

BLonD-MPI: Distributed Longitudinal Beam Dynamics Simulations

Konstantinos Iliakis

PhD Candidate CERN, CH - NTUA, GR konstantinos.iliakis@cern.ch

Supervisors:

Dr. Helga Timko, CERN Dr. Sotirios Xydis, NTUA Dr. Dimitrios Soudris, NTUA

February 21, 2019

Introduction & Background	Implementation	Results	HPCBatch Cluster	Conclusion
●0	00	0000	0	O
Distributed Com	puting			

Distributed System

- Network of computers exchanging messages.
- Perform operations collectively.

MPI

- Message Passing Interface.
- A standard for inter-process communication.
- Various implementations: MPICH, OpenMPI, Intel MPI ...

Introduction & Background	Implementation	Results	HPCBatch Cluster	Conclusion
⊙●	00	0000	0	O
Motivation				

Why we need BLonD-MPI?

- Horizontal vs vertical scaling.
- BLonD has been shown to be memory bounded.
- Continuous increase in problem sizes.

Scale Up- Vertical Scaling

Scale Out- Horizontal Scaling

		5	110
-SF	SE	ינוצ	VVG

Introduction & Background	Implementation	Results	HPCBatch Cluster	Conclusion
	•0	0000	0	O
High-level Imple	ementation			

Initialization

- All workers (or tasks) execute the script.
- Each worker assigned a subset of the beam.

Main loop

- Each worker tracks its own subset.
- Reduction to generate the global profile.
- Poorly scalable tasks executed by all workers.

Finalization

- A master worker gathers all data back.
- All other workers exit.

Introduction & Background	Implementation	Results	HPCBatch Cluster	Conclusion
	O•	0000	0	O
Optimizations				

Minimize Communication

- Profile casted to 32-bit integer.
- Poorly scalable tasks executed by all workers.

Minimize Serial regions

- All serial regions are parallelised and implemented in C.
- Packed FFTs when multiple induced voltage objects.

Minimize Synchronization

• Only synchronization point: the profile reduction.

Introduction & Background	Implementation	Results	HPCBatch Cluster	Conclusion
	00	●000	0	O
Experimental Eva	aluation			

- 72 bunches/ 4Mppb.
- 43K turns.
- BLonD run-time (single core): 2 days.
- BLonD-MPI (8 nodes): 30 minutes.

•••	. •	0000	0	0
Approximate Co	omputing			

Note that:

- Trade-off accuracy for performance and scalability.
- Useful in the early stage of the design space exploration.
- For advanced users.
- Optional.

• Assumption: Beam profile changes slightly between consecutive turns.

• Assumption: Every worker is assigned a representative subset of the whole distribution.

Introduction & Background	Implementation	Results	HPCBatch Cluster	Conclusion
	00	0000	●	O
CERN HPCBate	sh Cluster			

Practical Info

- Access (members of BE): e-mail Giovanni Rumolo and subscribe to the service-hpc-be e-group.
- 239 Intel nodes \approx 4600 cores.
- All major MPI implementations pre-installed.
- Useful links: Cluster knowledge base and SLURM docs.

Getting started with BLonD-MPI

- Step-by-step instructions on the BLonD-MPI repository page.
- Few (4-5 lines of code) modifications needed in the main file.

Introduction & Background	Implementation 00	Results 0000	HPCBatch Cluster 0	Conclusion
Conclusion & F	uture Work			

Conclusions

- BLonD-MPI
 - Uses the power of distributed computing.
 - Reduces the run-time by two orders of magnitude (a year in three days).
 - Enables new studies that were prohibitive in the past.

Future Work

- Merge project with BLonD.
- Run-time manager to bound the approximation error.
- MPI over GPUs (CUDA/ Thrust/ OpenACC).

Introduction & Background	Implementation	Results	HPCBatch Cluster	Conclusion
	00	0000	0	O
Q&A				

Thanks to my supervisors and Markus Schwarz.

