Non-linear chromaticity measurements in SPS

Michele Carlà, Hannes Bartosik, Beck Mario, Schenk Michael

19 October 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Carrying on the SPS non-linear optics characterization ¹

- Non-linear optics model is basic ingredient for studying incoherent (and coherent!) effects in view of LIU (LHC Injector Upgrade Project)
- · Magnetic model of SPS main magnets not available
- · Development of effective non-linear optics model based on beam measurements
 - · At 26 GeV/c injection energy
 - Two optics (Q20 and Q26) allow for different sampling of multipole errors due to different dispersion and optics functions

¹Improved Methods for the Measurement and Simulation of the CERN SPS Non-linear Optics, IPAC 2016, THPMR036.

= nan

allowed multipole errors of dipoles error of quadrupoles												
error order	6-pole		10-pole		14-pole		12-pole		6-pole		8-pole	
chromaticity order	$Q'_{x,y}$		$Q_{x,y}^{\prime\prime\prime}$		$Q_{x,y}^{'''''}$		$Q_{x,y}^{\prime\prime\prime\prime\prime}$		$Q'_{x,y}$		$Q_{x,y}^{\prime\prime}$	
variable name	b3a	b3b	b5a	b5b	b7a	b7b	b6f	b6d	b3f	b3d	b4f	b4d
element	MBA	MBB	MBA	MBB	MBA	MBB	QF	QD	LSF	LSD	LOF	LOD
magnet type	dipoles						quadrupoles		sextupoles		octupoles	

first allowed multipole

Remanent fields of main component in sextupoles and octupoels

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

· Systematic mulitpole errors on SPS main magnets

- · Placed at main magnets according to allowed error harmonics
- · These errors are mainly due to remanent fields from ramping to top energy

· The model is fitted to the data by

- · calculate the response matrix for all multipole errors on the nonlinear chromaticity in MADX-PTC
- apply an SVD algorithm
- SVD can be applied to one measurement set individually, or to multiple sets at the same time (a good non-linear model should be able to predict the chromaticity for all optics)

Combined optics modelling

· Consistent MADX model can be achieved with

- same $3^{\rm vd},5^{\rm th}$ and $7^{\rm th}$ order components in main dipoles and $6^{\rm th}$ order component in quadrupoles in both optics
- · same 3rd order component due to remanent fields in sextupoles in both optics
- 4th order components due to remanent fields in octupoles (different for the two optics, justified due to different octupole settings on preceding cycle during the measurements)

Whats new?

・ロト・(部・・モト・モー うへぐ

Including Q22 and widening the momentum scan:

What prevents a wider momentum scan?

- ► Energy spread + chromaticity → **Beam losses**
- ► High chromaticity → Fast decoherence

By lowering the beam intensity we can:

- ► Reduce RF voltage → Reduce energy spread → Reduce losses
- ► Reduce chromaticity → **Reduce decoherence**

Bunch intensity has been lowered to $\sim 2 \cdot 10^{10}$ and RF total voltage to 300KV

Wide momentum-scan tune-shift in Q22

- Black line is a polynomial fit (7th order)
- ▶ Above the 7th order errors (from the covariance matrix) explode

A D > A P > A B > A B >

Э

Each point is the average of ~5 acquisitions

Wide momentum-scan tune-shift in Q20/Q26

Q20

Q26

Fitting the model to experimental data

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

500

- Fitting only terms common to all 3 optics
- The fit does not reproduce well the observations
- more degrees of freedom are required

Allowing for an independent residual field in octupoles...

Octupolar residual field is very similar in Q20/Q22 but not for Q26

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Q20/Q22 have been measured the isame day, Q26 the day after

Tune foot-print from last week high intensity run (Q20)

- Similar chromaticity to the one used during measurements
- ► Energy spread: +/-5.5e-3 (dP/P used during measurements)

Helpfull to understand **losses from large dP/P** particles (as in uncaptured beam)

Sac

Some remarks and final thoughts...

Wide dP/P scans for Q20/Q22/Q26:

Lowering the bunch intensity did the trick

Effective model extended to 3 optics:

- Remanent sextupolar component confirmed
- ▶ Q20/Q22 show a consistent octupolar field, while Q26 no
 - Maybe due to remanent fields? This could be tested

The results here presented are to be considered as a first attempt, a refined analysis is ongoing...

Horizontal Q[0]: 2.54e-03 +/- 5.12 % Q[1]: -6.50e-01 +/- 4.05 % Q[2]: -1.11e+03 +/- 1.55 %

Vertical

Q[0] : 4.36e-03 +/- 7.68 % Q[1] : 2.65e+00 +/- 3.79 % Q[2] : 3.74e+03 +/- 1.52 %

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ●