HOM damping for future 3-section 200MHz TWCs

P. Kramer

Content

- Damping performance with todays damping scheme
- Effects of adding additional HOM-couplers
 - Increase in impedance of $17\pi/33$ split-mode
- Possible mitigations of $17\pi/33$ split-mode
- Proposals for new HOM-damping schemes
- Conclusions & Outlook

Improvement of present damping scheme

• The present damping scheme is insufficient

3-sections + present HOM damping

	TT	f [MHz]	Q	R/Q [Ω]	R [kΩ]	рА
000000000000000000000000000000000000000	<u>00000</u>	627.7	5600	5.9	33	17π/33
		629.2	445	92	41	23π/33
		630.3	394	137	54	14π/33

• Effect of additional couplers in E-field maxima of HOMs

Image: Contract of the sector of the sect	-sections	s + additional couplers			
	f [MHz]	Q	R/Q [Ω]	R [kΩ]	рА
	627.7	6952	6.8	47	17π/33
	629.2	296	89	26.1	23π/33
Increase in impedance of $17\pi/33$ -mode	630.3	224	127	28.5	14π/33

Effects of adding HOM-couplers

- Additional modes are created in the dangerous 600MHz cavity passband
- $17\pi/33$ split-mode is particularly detrimental
 - The EM-fields are pushed into the less accessible lower half of the cavity
 - The field strength in the coupler area and the Q are fairly low
- Sufficient damping is very difficult from the top-ports

Remember: Q0=35000 to Qd=3000 for 30π/44-mode

Q is not sufficiently well damped (even in the periodic 2-singlecell approach).

Patrick Kramer

- A sufficient damping solution can not simply be improved by adding additional couplers
 - Especially (already damped) low-Q modes are susceptible to shifts of their EM-fields
 - The damping performance will therefore often even be deteriorated

Options for mitigation of $17\pi/33$ -mode

1) Avoid $17\pi/33$ -mode impedance to become pronounced

- Essentially by using less invasive, shorter probes
- 2) Damp $17\pi/33$ -mode in the lower half of the cavity
 - Three proposals will be given

CERI

Avoid $17\pi/33$ -mode to become pronounced

- Use shorter probes on HOM-ports where $17\pi/33$ -mode is most susceptible
- Still a sufficient damping performance is necessary
 - Shorter probes on all couplers are not a solution

• This trade-off leads to a balancing of the 3 HOM impedances

0000

Impedance is reduced by factor 2.2

(with regard to impedance model) No room for further damping improvement

f [MHz]	Q	R/Q [Ω]	R [kΩ]	рА
627.6	5172	5.8	30.0	17π/33
629.2	325	90	29.3	23π/33
630.2	245	126	30.5	14π/33

3-sections + HOM trade-off

CERN

Damping via vacuum pumping ports

- All sections have vacuum pumping ports in positions 3, 6, 9
 - Today and in the future not all of them are/ will be used

Sections would most likely need to be machined

3-sections + vacPort17					
f [MHz]	Q	R/Q [Ω]	R [kΩ]	рА	
627.6	3642	3.0	5.5	17π/33	
629.3	262	79	20.8	23π/33	
630.3	194	123	23.9	14π/33	

R/Q is reduced by probe alone

Impedance is reduced by factor 2.8 (with regard to impedance model) Factor 3.1 using two vac-ports

Damping via pedestal

- Only one additional pedestal-coupler is considered
 - New drift-tube would have to be machined & assembled

Influence on FPB is investigated later in this presentation

3-sections + pedestal coupler					
f [MHz]	Q	R/Q [Ω]	R [kΩ]	рА	
627.6	2070	10.4	21.5	17π/33	
629.3	250	86	21.6	23π/33	
630.3	194	123	24.0	14π/33	

Impedance is reduced by factor 2.8

Damping via endplate HOM-ports

- Ports are currently occupied by 460MHz transverse HOM-couplers
 - Use the lower ports for damping of $17\pi/33$ -mode

Influence on FPB is investigated on next slide_

3-sections + pedestal coupler

f [MHz]	Q	R/Q [Ω]	R [kΩ]	рА
627.6	2550	9.4	23.9	17π/33
629.5	318	80	25.4	23π/33
630.4	197	116	22.9	14π/33

Impedance is reduced by factor 2.6 (with regard to impedance model)

 Damping is also still limited by 17π/33-mode
Work ongoing

Influence on the fundamental passband (FPB)

- <u>Vacuum-port-couplers</u> will not have an increased impact on FPB
- Influence of a single <u>pedestal-coupler</u> is negligible
 - Coupling of the probe to the FPB is not strong

	f	Q
sC+628HOM	200.2	22710
sC+628HOM+pedestalHOM	200.2	22706

<u>Endplate-coupler</u> can couple to FPB

Conclusions

- Conclusion on endplate-coupler will be given soon
 - Improve damping (on-going simulations, no single-cell approach possible)
 - Investigate impact on 460MHz transverse damping
 - Investigate impact on FPB further
- Mechanical feasibility of vac-port- and pedestal-coupler should be studied (Eric)
- Decision should be made if a slightly less damping would be preferred over cavity machining