HOM damping for future 3-section 200MHz TWCs

Update

P. Kramer

Acknowledgements: C. Vollinger, A. Farricker

3-section damping

- Damping schemes must fulfill several requirements:
 - 1) Sufficient damping of $17\pi/33$ -mode in lower part of cavity
 - 2) Sufficient damping of other HOMs
 - 3) Acceptable influence on FPB
 - 4) Leave sufficient number of access ports for transverse HOM-damping

mitigation via pumping ports

Patrick Kramer

Damping via endplate HOM-ports

Impedance is reduced by factor 3.0

(with regard to impedance model)

• Influence of endplate-coupler on FPB:

CER

- Is this an acceptable frequency shift?
- What is the maximum frequency shift allowed?

HOM-mitigation via vacuum pumping ports CERN vacPort Q R/Q pА \bigcirc Ô Ô [MHz] **[**Ω] [kΩ] 17 coupler Impedance is reduced by factor 2.8 627.7 8500 62.5 $17\pi/33$ 7.4 no (Factor 3.1 using two vacuum-ports) 627.7 3642 3.0 5.5 $17\pi/33$ yes

- HOM-coupler in (one) pumping port can reduce both Q and R/Q
 - Machining of at least four sections would be necessary to obtain

Is it possible to reduce the impedance of the $17\pi/33$ -mode by only putting a perturbation in some vacuum pumping ports?

HOM-mitigation via vacuum pumping ports

Configuration with additional couplers on top

р	additional couplers					
•	f [MHz]	Q	R/Q [Ω]	R [kΩ]	рА	
<mark>)</mark>	627.7	8500	7.4	62.5	17π/33	

• Perturbation is placed in field maxima of $17\pi/33$ -mode

HOM-mitigation via vacuum pumping ports

Configuration with additional couplers on top

p	additional couplers					
	f [MHz]	Q	R/Q [Ω]	R [kΩ]	рА	
ł	627.7	8500	7.4	62.5	17π/33	

• Perturbation placement: Trade-off by looking at field profiles

- Also R/Q of other high impedance modes is reduced
- Results confirmed by ACE3P

HOM-mitigation via vacuum pumping ports

- Influence of perturbation on FPB
 - Infinite periodic single-cell approach
 - 18 couplers and 2 perturbations are used on a 3-section cavity

CERN

Next step: Proof of principle by measurement (

- Perturbation measurements on 3-section cavity are cumbersome
- A mode with similar behavior as $17\pi/33$ was found on a 1-section cavity ($6\pi/11$)
- Show two effects of the perturbing probes:
 - 1) $6 \pi / 11$ -mode does not exist anymore in 630MHz frequency range (S-Parameters)
 - 2) The R/Q of other modes is vastly influenced (Perturbation measurements)
- Measure also the influence on the FPB
- If simulation and measurements agree for 1-section, results for 3-section cavity can be considered reliable

Proof of principle by measurement

1-section + 628-couplers					
f [MHz]	Q	рА			
625.0	5200				
625.27	1057	6π/11			

Proof of principle by measurement

1-secti	1-section + 628-couplers					
f [MHz]	Q	рА				
625.0	5200					
625.27	1057	6π/11				

Conclusions

- Two damping solutions are found: both achieving factor 3.0 reduction
- Acceptable influence on FPB to be proven (work on-going)
 - Cavity tuning is studied
 - Maximal allowed frequency shift in FPB (due to HOM-mitigation) must be provided
- Once confirmed by measurements, the perturbation approach to decrease R/Qs could be generalized/ extended

Thanks

