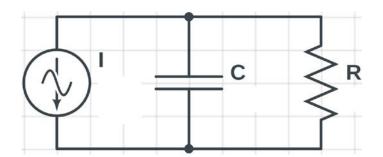
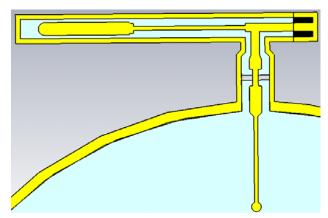
200MHz TWC: 628MHz-coupler improvement

Content


- More work on 628-coupler improvement
- What is limiting the current 628MHz-coupler?
- General overview/ insight

Circuit model of coupler for 628MHz-mode

Approximation of cavity & coupler with equivalent generator circuit

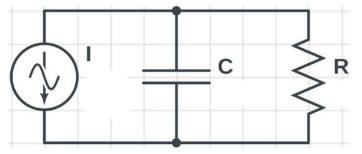

Only for 628MHz mode and very simplified

C: probe capacitance

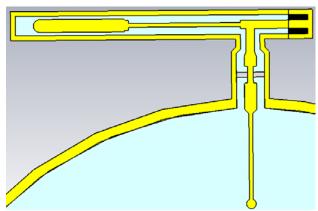
I: displacement current

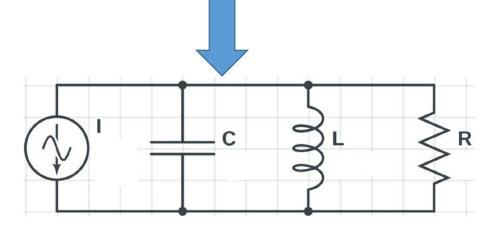
R: load

Power extracted from HOM:

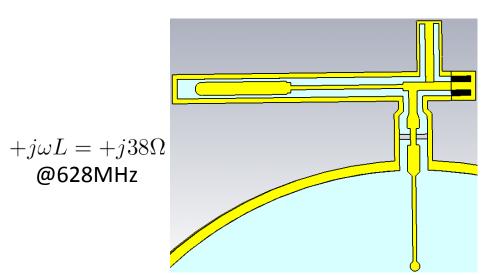

$$P = \frac{1}{2}I_0^2 Re\{Z\} = \frac{1}{2}I_0^2 * \frac{1/R}{(1/R)^2 + (\omega C)^2}$$

- -> raise induced current I
- -> compensate probe capacitance C
- -> decrease load R

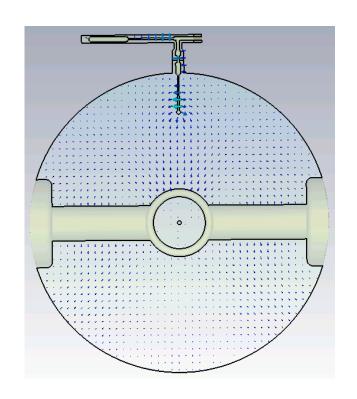

Compensation of probe capacitance

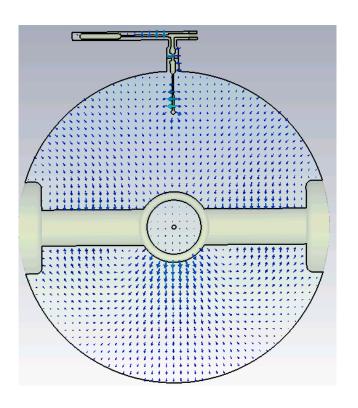


Place an inductance for compensation



$$P = \frac{1}{2}I_0^2 Re\{Z\} = \frac{1}{2}I_0^2 * \frac{1/R}{(1/R)^2 + (\omega C)^2}$$


L: compensating inductance



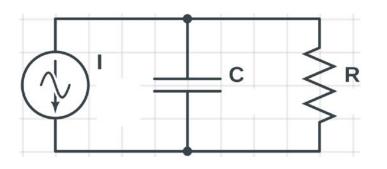
Compensation of probe capacitance

Evaluate performance with the two 628MHz degenerate modes

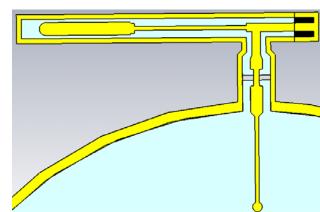
Damping one mode increases the other of the two degenerate modes!

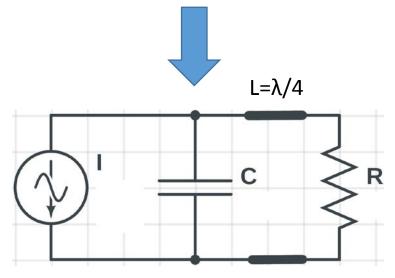
Compensation of probe capacitance

Single-cell simulations


Present coupler				Compensated coupler			
f [MHz]	Q	R/Q [Ω]	R [kΩ]	f [MHz]	Q	R/Q [Ω]	R [kΩ]
624.5	57	2.6	0.15	625.9	331	6.4	2.13
629.1	755	5.9	4.4	629.7	964	2.7	2.6

Decrease of a factor 1.7


Reduction of load impedance



• Use of a $\lambda/4$ -transformer (narrowband)

$$P = \frac{1}{2}I_0^2 Re\{Z\} = \frac{1}{2}I_0^2 * \frac{1/R}{(1/R)^2 + (\omega C)^2}$$

Effective load: 30Ω @628MHz

Reduction of load impedance

Single-cell simulations

Present coupler				Narrowband coupler			
f [MHz]	Q	R/Q [Ω]	R [kΩ]	f [MHz]	Q	R/Q [Ω]	R [kΩ]
624.5	57	2.6	0.15	626.8	210	6.4	1.33
629.1	755	5.9	4.4	629.8	522	2.8	1.46

Decrease of a factor 3.0

Outlook

- Combination of the improvements not easy
- Generator approach made is too simplified
- Model the cavity as a lumped resonance circuit