Beam losses in coast from recent SPS MDs

F. Antoniou, A. Alekou, H. Bartosik, T. Bohl, R. Calaga, A. Lasheen, G. Papotti, J. Repond

Motivation

- The **crab cavity test** with proton beams will take place in the SPS in 2018
- Once the CC is installed only limited time of dedicated MDs will be available
- We need to be prepared so that we can use the MDs with the CC in the SPS in the most efficient way
- HLLHC-UK collaboration
- ➔ Previous studies: Emittance evolution in coast in the SPS
 - Similar behaviour for H and V until 2012 @ 120 GeV and 270 GeV
 - Visible difference between the two planes from 2015 and after
 - 2 dedicated MDs in 2016

Emittance evolution in coast MD: 7 Dec. 2016

- From 2015 visible difference between the two planes was observed
- MD conditions:
 - Energy of 270 GeV
 - Two different intensities
 - Coast 1: 4.2e10
 - Coast 2: 1.6 e10
 - Chroma H/V: 0.5/1
 - Wire scanners used: 519H, 416V, 517V
- → Chroma change by 2 units performed after 2 hours in coast 2
- → Multiple wire scans performed the last 15 min. of the MD

Emittance evolution along the MD

- Linear fit applied for 4 different cases:
 - a. Coast 1
 - b. Coast 2 before chroma change and for same time-window as in coast 1
 - c. Coast 2 after chroma change
 - d. Coast 2 during the multiple WS
- Clear slope increase after the chroma change in both planes
- Slope increase during the multiple scans, however the spread is also large

07 Dec 2017 coast 1

- Intensity: 4.2e10
- bunch length 2.28ns
- Vrf = 2MV
- emitH/V = 2.0/1.9 um
- Losses: 25% in 1.8h
- Bunch length blow up
 ~ 20%
 - IBS predicts ~10%

07 Dec 2017 coast 2

- Intensity: 2.2e10
- bunch length 2.3ns
- Vrf = 2MV
- emitH/V = 2.0/1.7 um
- Losses: 30% in 1.8h
- Bunch length blow up ~10%
 - IBS predicts ~ 5%

13 July 2016

- Intensity: 2.2e10
- bunch length: 1.96ns
- emitH/V = 2.8/2.1 um
- Losses: 20% in 1.7h
- Bunch length blow up ~10%
 - IBS predicts ~5%

07 Oct. 2015

- Intensity: 4.8e10
- bunch length 1.11ns
- Vrf = 5MV
- emitH/V = 2.8/2.1um
- Losses: ~40% in 4h
- Bunch length blow up ~40%
 - IBS predicts 40%

MD on coast: 10 May 2017

- → MD settings:
 - Energy: 270 GeV
 - Intensity: ~2e10
 - Low chroma
- → MD goal:
 - Follow up the transverse emittance evolution under similar conditions as in December 2016
 - We asked to have the first MD of the year, expecting to have worse vacuum levels \rightarrow interested on the impact on the transverse emittance evolution
 - Understand the off-bucket losses we observed in previous MDs
- → Finally...
 - The transverse profiles were not very nice and we observed large tails
 - Gave time for setting up the WS
 - Concentrated mostly on the off-bucket losses
 - ◆ 3 different RF voltages were studies: 2, 4 and 5 MV

MD on coast: 10 May 2017

- An example of the transverse profiles
 - Large tails
 - Large hor. Emittance
 - The emittance is coming from the PS already with large tails

10 May 2017

- Mountain range data for coast 7 with Vrf = 5MV
 - Very similar for the previous coasts as well
- Similar behaviour as previous MDs until

10 May 2017

• Thomas switched off the RF feedback around 16:17

 \rightarrow Clear change of slope in losses!

- Not clear change in bunch length evolution
- At the last 30 minutes of the MD the RF phase loop was also switched off → The bunch got unstable

Summary

- During coast MDs, losses out of the bucket were observed in all MDs of 2015 and 2016
- An MD in coast was performed yesterday (10 May 2017) under similar conditions as in Dec. 2016
 - Same observations as in past MDs with respect to losses
 - Switching off the RF feedback led to big improvement!
 - \circ Switching off the RF phase loop as well \rightarrow bunch got unstable

Many thanks to the RF team for their great help yesterday!!

- Vrf = 2MV
- Bunch length: 2.3 ns
- Long. emit.: 0.18 eV.s

- Vrf = 5MV
- Bunch length: 1.2 ns
- Long. emit.: 0.35 eV.s

Summary table

	Emit. H/V [µm]	Nb [1e10]	Chroma H/V	H growth [µm/h]	V growth [µm/h]	Time [h]	Number of linear WS scans	V growth per scan [nm]
Coast 1	2.23/1.61	4.25	0.5/1	0.49	0.30	1.8	17	31.2
Coast 2 before chroma change	2.25/1.41	1.65	0.5/1	0.55	0.27	1.8	10	63.5
Coast 2 after chroma change	4.0/1.98		2.5/3	1.52	0.51	0.8	1	-
Coast 2 during WS multi-scans	-/2.3		2.5/3	-	0.82	0.4	24	14.3

- No difference between the two intensities (1.6e10 and 4.2e10)
- Clear correlation with chroma
- No clear correlation between the emittance increase and the number of wire-scans
 - Need to repeat for longer time interval to verify the observations of F. Roncarolo