Losses at Flat Bottom: TWC 200 MHz, Beam Loading and More

2016-11-03

Note-2016-14

LIU SPS BD WG 2016-11-03

Contents

Travelling Wave Structure

Feedback/Feed-forward

Limits of Beam Loading Compensation

Losses at Flat Bottom

Travelling wave structure for SPS

▶ W. Schnell, 1965, and G. Dôme, 1977

Effective voltage seen by the beam upon one traversal

$$V=Z_1I_{\rm g}+Z_2I_{\rm b}$$

$$Z_1 = \sqrt{\frac{R_2 Z_0}{2}} \frac{\sin \tau/2}{\tau/2} I$$

$$Z_2 = -\frac{R_2}{8} \left[\left(\frac{\sin \tau/2}{\tau/2} \right)^2 - j 2 \frac{\tau - \sin \tau}{\tau^2} \right] I^2$$

$$\tau = \frac{I}{V_{\pi}} (\omega - \omega_0)$$

- ► *R*₂: TWC series impedance
- v_g: TWC group velocity
- ► Z₀: line impedance
- linearised ωk diagram

Note-2016-14

Vector Diagram

Counterphasing of Equal Length Structures

Step Response

With

$$\vec{V} = \vec{V}_{\rm RF} + \vec{V}_{\rm b}$$

$$\rho = \left(\frac{\sin \tau/2}{\tau/2}\right)^2 - j2\frac{\tau - \sin \tau}{\tau^2}$$

$$\alpha = \arg \rho$$

$$P = \left(\frac{\tau/2}{\sin \tau/2}\right)^2 \left\{\frac{1}{R_2 l^2} V^2 + \frac{R_2 l^2}{64} l_{\rm b}^2 + \frac{1}{4} V l_{\rm b} \rho \cos(\alpha - \varphi_{\rm s})\right\}.$$

Example

- 72 bunches, 25 ns bunch spacing,
- MD_SCRUB_26_L26400_Q20
- \blacktriangleright $N_{
 m Q}=1.7 imes10^{11}$, $I_{
 m pk}=2.1$ A
- \blacktriangleright cosine-squared bunches of 1.5 ns ($f_{
 m shape}=$ 0.92), $I_{
 m b}=$ 1.9 A

Simplified Power Requirements With $\tau = 0$

$$P = rac{1}{R_2 l^2} V^2 + rac{R_2 l^2}{64} l_{
m b}^2 + rac{1}{4} V l_{
m b} \cos(arphi_{
m s}),$$

and

$$I_{\rm opt} = \sqrt{\frac{8V}{R_2 I_{\rm b}}}.$$

- no transient beam loading
- uniform azimuthal beam distribution
- no beam loading angle variation
- no counterphasing

Beam loading compensation by feed-forward and feedback

Feedback at injection

Figure 11: Compensation of the beam loading at injection with the feed-back. I/Q components of V_t (AC coupled) showing the progressive compensation turn after turn, $20\mu s$ per div., $T_{rev} = 23\mu s$. (One batch of 48 bunches, 0.83×10^{11} protons per bunch, four sections cavity, MD session 30^{th} Aug. 2000).

P. Baudrenghien et al, 2001

Note-2016-14

LIU SPS BD WG 2016-11-03

Feed-forward at injection

Figure 5: Compensation of the beam loading at injection with the feed-forward. I/Q components of V_t (AC coupled): The time window (5 μ s per div.) shows the first turn where no compensation can be applied, and the second turn (after one revolution period $T_{rev} = 23\mu s$) with the full correction from the feed-forward. (One batch of 72 bunches, 0.7 × 10¹¹ protons per bunch, four sections cavity, MD session 2nd Nov. 2000).

P. Baudrenghien et al, 2001

LIU SPS BD WG 2016-11-03

At 1 ms after injection

Figure 12: I/Q components of V_t (AC coupled) 1 injection (500 ns per div.). Top: no compensation feed-back on. Beam conditions as in Figure 11. Figure 16: I/Q components of V_t (AC coupled) 1 ms after injection (500 ns per div.). Top: no compensation. Bottom: feed-forward and feed-back pair on. Beam conditions as in Figure 11.

P. Baudrenghien et al, 2001

Limitations

- $\blacktriangleright \ Z_1 \neq Z_2$
- ▶ *f*₀, dispersion
- cavity voltage measurement
- feedback and $f_{\rm s}$ (Q26/Q20)
- noise
- bandwidth of amplifiers

- beam loss at flat bottom
- injection
- examples of P, V_{cav} for TWC200-4 (5 sections)
- voltage partition: not discussed
- counter-phasing: not discussed
- V_{min}: not discussed

- MD_SCRUB_26_L26400_Q20, 2014-11-05
- ▶ 72 bunches with 25 ns bunch spacing, 3 batches

•
$$N_{\rm Q} = 1.25 \times 10^{11}$$

Note-2016-14

Note-2016-14

- MD_SCRUB_26_L26400_Q20, 2015-04-13
- ▶ 72 bunches with 25 ns bunch spacing, 4 batches
- $N_{\rm Q} = 1.5 \times 10^{11}$

Flat Bottom

- MD_SCRUB_26_L26400_Q20, 2014-12-10
- ▶ 72 bunches with 25 ns bunch spacing, 1 batch

•
$$N_{\rm Q} = 1.7 \times 10^{11}$$

Injection

- MD SCRUB 26 L26400 Q20, 2015-06-01
- ▶ 72 bunches with 25 ns bunch spacing, 1 batch
- $N_{\rm O} = 1.9 \times 10^{11}$

Note-2016-14

- MD_SCRUB_26_L26400_Q20, 2015-05-08
- ▶ 72 bunches with 25 ns bunch spacing, doublet, 1 batch
- $N_{
 m Q} = 1.7 imes 10^{11}$ at injection

Injection and whole cycle

Losses at Flat Bottom

- S shape phase space distribution (bunch rotation in CPS)
- feedback/feed-forward
 - injection oscillations
 - peak power limit
 - 1st/2nd batch power increase
 - ▶ *f*_s, Q26/Q20
 - h/w limitations
- Iongitudinal dampers
 - ▶ Q26/Q20
- TWC 800 MHz