TWC 200 MHz Beam Loading At Injection (pLHC Beams)

2016-12-01

Note-2016-16

LIU SPS BD WG 2016-12-01

Contents

Introduction

Observations with TWC200-4 (5 Sections)

Comparison 4 Sections - 5 Sections

Voltage Partition

Summary

Introduction

Comparison of beam loading with 8b4e and standard 25 ns pLHC beam at injection.

- cycle MD_26_28_3inj_L21600_Q20, ID: 9754
- > $V_{200} =$ 4.5 MV, $V_{800} =$ 450 kV, $\gamma_{\rm t} =$ 17.95, p = 26 GeV/c
- ▶ 8b4e beam, 48 bunches, between 17:00 and 17:30
 - $\blacktriangleright~N_{\rm Q}=1.8\times10^{11},~N_{\rm Q,tot}=8.6\times10^{12}$
 - $l_{\text{batch}} = 1.675 \ \mu \text{s}$

▶ standard 25 ns beam, 72 bunches, between 18:30 and 18:45

- $N_{
 m Q} = 1.3 imes 10^{11}$, $N_{
 m Q,tot} = 9.1 imes 10^{12}$
- ▶ $l_{\rm batch} = 1.775 \ \mu s$

Measurements of power at RF Power Amplifier Final Hybrid and cavity voltage at Cavity Return for TWC200-4 (5 Sections) at various time scales (μs to 10 ms).

First turn, total voltage

First turn, μ s time scale

harmonic content

Observations with TWC200-4 (5 Sections) First 2 ms

▶ 0.4 ms, 2*f*_s

Note-2016-16

LIU SPS BD WG 2016-12-01

Observations with TWC200-4 (5 Sections) First 2 ms

uncompensated beam loading voltage

LIU SPS BD WG 2016-12-01

One turn at 0.4 ms

- ▶ power, *l*_{batch}
- harmonic content

Steady state, one turn at 15 ms

- \blacktriangleright power, $l_{\rm batch}$
- harmonic content

Steady state, one turn at 15 ms

uncompensated beam loading voltage

Total acquisition time

Total acquisition time

uncompensated beam loading voltage

25 ns beam, full acquisition time

25 ns beam, full acquisition time

8b4e beam, full acquisition time

8b4e beam, full acquisition time

Voltage Partition

Voltage Partition

▶ partition of total requested RF voltage, V_Σ to the 4 travelling wave structures according to {V₁, V₂, V₃, V₄} = v_pV_Σ

►
$$v_{\rm p} = \{f_1, f_2, f_3, f_4\} / \sum_{i=1}^4 f_i, f_i \in \mathbb{R}^+$$
, for power balancing

- ▶ $v_{\rm p} = \{4, 4, 5, 5\}/18$ for zero beam current, other values for high voltage and high beam loading
- ▶ if P requirement is dominated by beam loading, gain with changing v_p is marginal
- if uncompensated beam loading voltage is not due to lack of *P*, change of v_p does not reduce *P* demand

Summary

- observations of 2016-11-22 in line with previously made measurements
- observations of TWC200-4 shown in detail, correspondingly similar results for TWC200-2
- no benefit of voltage partition
- no beam loading compensation if lack of power
- no beam loading compensation if lack of bandwidth
- beam induced voltage less for 8b4e than for standard 25 ns beam
- beam loading compensation worse for 8b4e than for standard 25 ns beam