

LHC Injectors Upgrade

First Measurements on the SPS 200 MHz Travelling Wave Cavity (ACTCA) towards an impedance model

Toon Roggen, José E. Varela Campelo

LIU-SPS

- Longitudinal impedance model of the SPS
- Measurement setup & method
- Fundamental pass band: Results
- Higher Order Modes: Results
- 1.4 GHz band
- Conclusions

Longitudinal impedance model of the SPS

Why do we need this?

Beam dynamics codes

Measurement setup & method

SPS 200 MHz TWC in the ring:

• 4 to 5 sections / cavity system

Test device: One section

- 4.114 m long
- 11 drift tubes
- No power couplers
- No HOM couplers
- Short circuited
 - \rightarrow Standing wave measurements

What we're after:

- Goal: Obtain longitudinal impedance of SPS 200 MHz TWC
- Method: Bead-pull measurements
- Main concept: Introducing a conductor / dielectric / ferromagnetic into a resonator \rightarrow Frequency change (Perturbation theory).

$$\frac{\Delta f}{f_0} = \frac{\iiint_{V_{bead}}(\vec{E}_1.\vec{D}_0 - \vec{E}_0.\vec{D}_1 - \vec{H}_1.\vec{B}_0 + \vec{H}_0.\vec{B}_1) \, d\nu}{\iiint_{V} (\vec{E}_0.\vec{D}_1 - \vec{H}_0.\vec{B}_1) \, d\nu}$$
Assumptions: - Homogeneous bead $(\vec{D}, \vec{B} \rightarrow \vec{E}, \vec{H}, \epsilon, \mu)$
- Small perturbation
- Small bead: \vec{E}, \vec{H} constant within
- \vec{E}, \vec{H} outside bead: unchanged
- Only E_z sensitive: metallic + needle shape bead
 $\rightarrow \frac{\Delta f}{f_0} \approx \frac{1}{W_0} (K_1 \epsilon_0 |E_z|^2)$ with K_1 a constant related to the bead
dimensions, $W0$ the total time averaged
mean stored energy in the cavity.

- Goal: Obtain longitudinal impedance of SPS 200 MHz TWC
- Method: Bead-pull measurements
- Main concept:

Introducing a conductor / dielectric / ferromagnetic into a resonator \rightarrow Frequency change (Perturbation theory).

$$\frac{\Delta f_0}{f_0}(z) \sim \frac{|E_z(z)|^2}{\sqrt{W}} \rightarrow \text{Excite with } f_0 + \text{move bead & measure } \Delta f_0$$

 \rightarrow In practice: easier

 S_{21} (or S_{11}) \rightarrow transmission phase shift $\Delta \phi$

 $\frac{\Delta f_0}{f_0} \approx \frac{1}{2Q_L} \tan(\Delta \varphi)$

→ Semi-automated (single f_0) (motor + VNA + acquisition soft)

ERN-SPS 85-46

Measurement setup & method

Typical transmission measurement for a needle moving in the SPS 200 MHz TWC in standing wave mode @ 202 MHz

Very accurate E_z measurement $\to \mathsf{R}/\mathsf{Q}$, but time consuming

Typical Result: SPS 200 MHz TWC FPB @ 202 MHz Simulation vs. measurement: E_z along cavity section

Fundamental pass band: Results

Fundamental pass band of the SPS 200 MHz TWC

- 11 modes in standing wave measurements ↔ 25 MHz pass band: 192 MHz – 217 MHz in travelling wave operation
- High R/Q: 198.6 MHz and 202.0 MHz

- Current impedance <u>model</u> (TWC) \rightarrow
- HOM coupler @ 628 MHz (Longit. mode)
- HOM coupler @ 939 MHz (Transv. mode)
- HOM coupler @ 460 MHz (Transv. mode)

Measurement situation SPS 200 MHz TWC :

! Remember !

- Single 4m section
- No FPC
- No HOM couplers
- Short circuited

f [MHz]	Z [kΩ]
200 (4-cav)	1752
200 (5-cav)	2760
629 (both)	388

500

400

[III]300-[0] 0/g 200-FPE

100

FPB @ 198 MHz and 202 MHz

Detailed view on next slide

0.8 0.9

Simulations vs. measurements: comparison

Simulations vs. measurements: comparison

Simulations vs. measurements: comparison

Other reasons for mismatch:

- Noisy data
- Asymmetry: Intrinsic to cavity or...?

	Simulation	Measurement
f [MHz]	622	
Δφ [°]	30	
R/Q [Ω]	7.2	??
Q	16356	

1.4 GHz band: Longit. modes

Simulation \leftrightarrow Measurements: Noisy, but no indications

SPS 200 MHz TWC impedance measurements

- Fundamental pass band: 11 modes, 25 MHz bandwidth
 - Good agreement sim. meas.
- HOM: Overall good agreement sim. meas.
 - Documented HOMs:
 - 628 MHz
 - Additional identified HOMs in standing wave:
 - 287 MHz
 - 328 MHz
 - 550 MHz To be investigated in-depth
 - 908 MHz

(TW, FPC and HOM couplers in place...)

- 915 MHz
- No indications of harmful longit. modes at 1.4 GHz

