

LIU-SPS BD WG meeting

Jonas Blomberg Ghini — Jose Enrique Varela Campelo

September 4th, 2014

Jonas Blomberg Ghini — Jose Enrique Varela Campelo — LIU-SPS BD WG meeting

A 🖓 🕨

1 Introduction

- 2 Simulations of ideal cases
- 3 Simulations of deviant cases
- 4 Measurements
- 5 Simulations versus measurements
- 6 Comparison between shielded and unshielded pumping port
- 7 Influence on total machine impedance
- 8 Summary and concluding remarks

1 Introduction

- 2 Simulations of ideal cases
- 3 Simulations of deviant cases
- 4 Measurements
- 5 Simulations versus measurements
- 6 Comparison between shielded and unshielded pumping port
- 7 Influence on total machine impedance
- 8 Summary and concluding remarks

A D > A D > A D > A D >

Motivation In the beginning, there was Impedance

The pumping port

- Used to connect vacuum pumps to the beam pipe
- Constitute abrupt change of geometric cross section

↓ Impedance

- Past shielding campaign to alleviate this
- Impedance of unshielded PP was presented previously [LIU–SPS BD WG 31.07.2014]

↓ Next step: Study impedance of Shielded pumping port

イロト イポト イヨト イヨト

Device under test

The pumping port, exterior

Jonas Blomberg Ghini — Jose Enrique Varela Campelo — LIU–SPS BD WG meeting

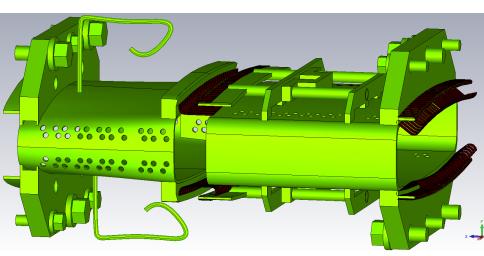
Device under test

Deviation from the actual configuration

- In the tunnel the shields are mounted on spot welded bolts
- In the lab the shields are mounted on throughput bolts becaue:
 - Speed of construction/realization
 - Better coupler placement

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Device under test The pumping port, interior



Jonas Blomberg Ghini — Jose Enrique Varela Campelo — LIU–SPS BD WG meeting

Device under test

Jonas Blomberg Ghini — Jose Enrique Varela Campelo — LIU-SPS BD WG meeting

イロト イヨト イヨト イヨト

Deviant cases

Misfits, undesirables and erroneous specimens

But, how could this happen?!

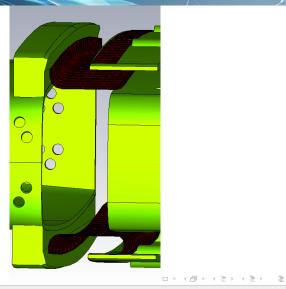
- Installation is difficult
- RF fingers can be askew
- Fingers can get stuck too far away from QF supports

Conducted investigations

- Symmetric gaps (upper and lower fingers retracted the same length)
- Asymmetric gaps (upper and lower fingers retracted different lengths)

Skewed fingers

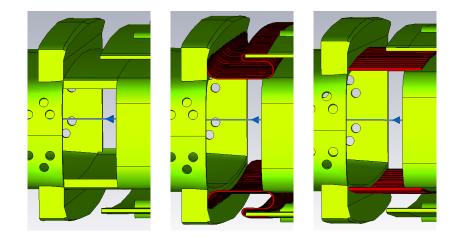
(one side of fingers do not touch QF supports)


1 Introduction

- 2 Simulations of ideal cases
- 3 Simulations of deviant cases
- 4 Measurements
- 5 Simulations versus measurements
- 6 Comparison between shielded and unshielded pumping port
- 7 Influence on total machine impedance
- 8 Summary and concluding remarks

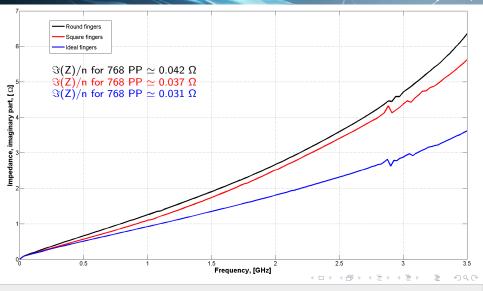
A D > A D > A D > A D >

RF finger geometry and impact on results Actual geometry



Jonas Blomberg Ghini — Jose Enrique Varela Campelo — LIU-SPS BD WG meeting

RF finger geometry and impact on results Three approximate geometries



Jonas Blomberg Ghini — Jose Enrique Varela Campelo — LIU-SPS BD WG meeting

(日) (部) (モ) (モ) (モ) (モ)

RF finger geometry and impact on results Resulting impedance from the three approximations

Jonas Blomberg Ghini — Jose Enrique Varela Campelo — LIU-SPS BD WG meeting

RF finger geometry and impact on results Resulting impedance from the three approximations

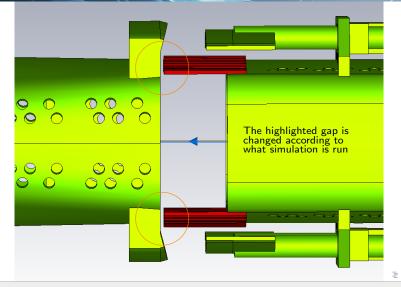
Computational time

Similarity between Round and Square allows for simulations to be run with square fingers to save computational time

Well placed fingers

Well placed fingers give only a very small contribution to the $\Im(Z)/n$

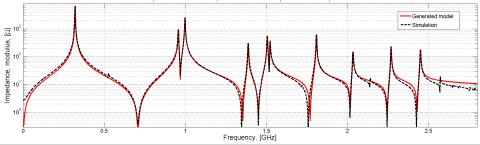
1 Introduction


Outline

- 2 Simulations of ideal cases
- 3 Simulations of deviant cases
- 4 Measurements
- 5 Simulations versus measurements
- 6 Comparison between shielded and unshielded pumping port
- 7 Influence on total machine impedance
- 8 Summary and concluding remarks

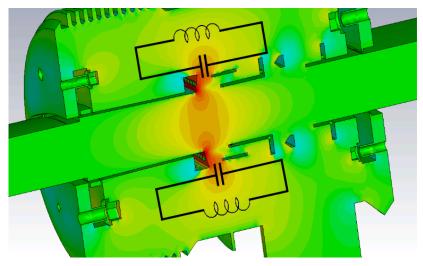
A D > A D > A D > A D >

No RF contact Uniform gap



Jonas Blomberg Ghini — Jose Enrique Varela Campelo — LIU-SPS BD WG meeting

No RF contact — #11 mm uniform gap


SimType	f [GHz]	Z [kΩ]	Q [U]	R/Q [Ω]
Wake	0.320	7.5	260	28.85
EigenMode	0.317	6.526	229.2	28.46
Wake	0.957 / 0.998	0.954 / 2.528	400 / 400	2.38 / 6.32
EigenMode	1.003	2.785	340	8.21
Wake	1.387	0.308	600	0.51
Wake	1.506 / 1.522	0.560 / 0.360	550 / 550	1.02 / 0.65
Wake	1.808	0.614	850	0.72
Wake	2.033	0.149	650	0.23
Wake	2.268	0.233	900	0.26
Wake	2.450	0.179	800	0.22

Jonas Blomberg Ghini — Jose Enrique Varela Campelo — LIU–SPS BD WG meeting

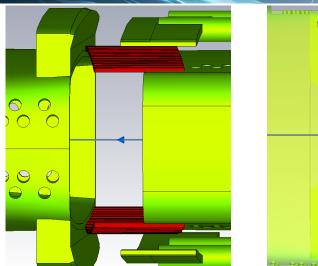
No RF contact — #11 mm uniform gap — Field from EigenMode

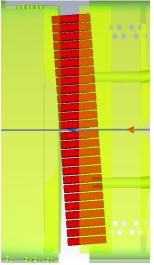
Jonas Blomberg Ghini — Jose Enrique Varela Campelo — LIU-SPS BD WG meeting

=

ヘロア 人間 ア 人間 ア 人間 アー

No RF contact — #2 2 mm uniform gap



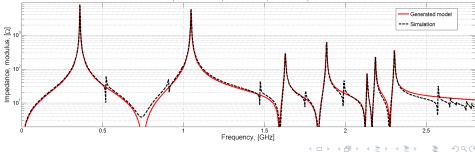

SimType	f [GHz]	Z [kΩ]	Q [U]	R/Q [Ω]	
Wake	0.347	8.55	270	31	
EigenMode	0.348	8.715	270	32.2	
Wake	1.055	6.2	525	12	
EigenMode	1.036	4.467	407	11	
Wake	1.588	0.75	500	1.5	
Wake	1.859	1.12	750	1.5	
Wake	2.11	0.43	700	0.6	
Wake	2.291	0.448	800	0.5	
Wake	2.711	0.27	750	0.3	
Å	A	1		Generated model	
$/ \setminus$,/ \	< 1	ι Λ		. /

Jonas Blomberg Ghini — Jose Enrique Varela Campelo — LIU-SPS BD WG meeting

Some RF contact

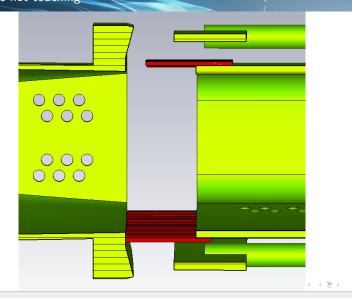
・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Jonas Blomberg Ghini — Jose Enrique Varela Campelo — LIU-SPS BD WG meeting


æ

Some RF contact

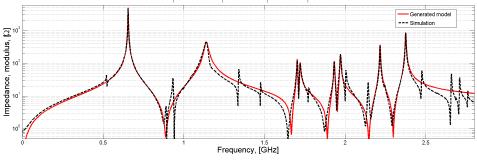
Fingers askew


SimType	f [GHz]	Z [kΩ]	Q [U]	R/Q [Ω]
Wake	0.360	7.97	280	28.45
EigenMode	0.357	7.75	250	31.15
Wake	1.046	5.90	520	11.35
EigenMode	1.029	4.615	405	10.9
Wake	1.628	0.289	400	0.72
Wake	1.883	0.623	680	0.92
Wake	2.133	0.074	800	0.09
Wake	2.185	0.225	700	0.32
Wake	2.302	0.36	800	0.45

Jonas Blomberg Ghini — Jose Enrique Varela Campelo — LIU–SPS BD WG meeting

Some RF contact Upper fingers not touching

Jonas Blomberg Ghini — Jose Enrique Varela Campelo — LIU-SPS BD WG meeting


3

Some RF contact

Upper fingers not touching

SimType	f [GHz]	Z [kΩ]	Q [U]	R/Q [Ω]
Wake	0.655	4.9	485	10.1
Wake	1.140	0.45	50	9
Wake	1.703	0.13	500	0.26
Wake	1.721	0.1	400	0.25
Wake	1.933	0.114	500	0.22
Wake	2.216	0.365	750	0.58
Wake	2.375	0.865	750	1.15

・ロト ・ 日 ト ・ モ ト ・ モ ト

Outline

- 2 Simulations of ideal cases
- 3 Simulations of deviant cases

4 Measurements

- 5 Simulations versus measurements
- 6 Comparison between shielded and unshielded pumping port
- 7 Influence on total machine impedance
- 8 Summary and concluding remarks

A D > A D > A D > A D >

Introduction to measurements General notes regarding challenges and correctness

Challenges

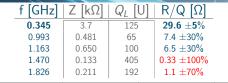
- Low Q's
- Relatively low R/Q's

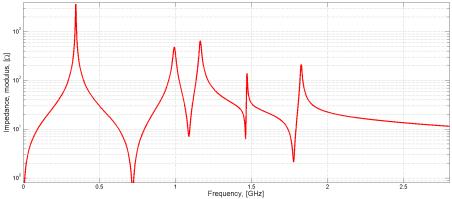
Very challenging measurements

- A lot of work has gone into improving the setup, measurement parameters and the post processing of results
- \blacksquare Resonances with R/Q < 1 have not been measured, as they, in any case, have very small impedance
- The focus has been on the first two modes (around 0.350–0.400 and 1.000 GHz)

Introduction to measurements Early conclusion

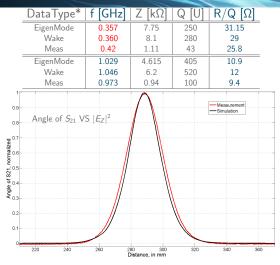
Important remark regarding the results


- Results for the low frequency mode (around 350–400 MHz) are all bullet proof
- Results for higher frequency modes suffer from uncertainties
 - Partially identified these uncertainties
 - Hopefully solved during next week


・ロト ・ 一下・ ・ ヨト ・ ヨト

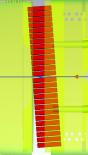
Uniform gap

Unknown gap length (1–5 mm) — beadpull measurements



Jonas Blomberg Ghini — Jose Enrique Varela Campelo — LIU-SPS BD WG meeting

Skewed fingers


Unknown angle

・ロト ・ 日 ト ・ モ ト ・ モ ト

slide 20

I

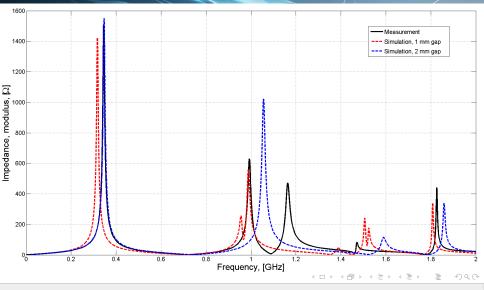
Jonas Blomberg Ghini — Jose Enrique Varela Campelo — LIU-SPS BD WG meeting

Damping resistors Measuring new Q's, uniform gap ~5mm

DampRes | f [GHz] | Q [U]

1 Daman Dag	0.382	76
1 DampRes	1.016	113
Long type	1.134	107
2 Dama Daa	0.381	51
2 DampRes	1.014	85
Long type	1.137	72

・ロン ・雪 と ・ ヨ と ・ ヨ と



Outline

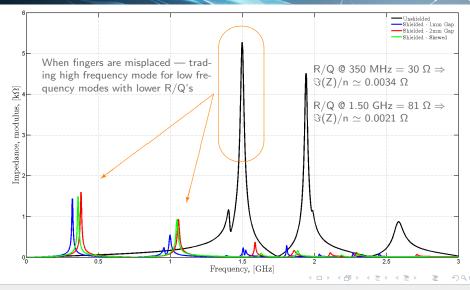
- 2 Simulations of ideal cases
- 3 Simulations of deviant cases
- 4 Measurements
- 5 Simulations versus measurements
- 6 Comparison between shielded and unshielded pumping port
- 7 Influence on total machine impedance
- 8 Summary and concluding remarks

・ロト ・ 雪 ト ・ ヨ ト

Comparing simulations and measurements Construct impedance model for damped pumping ports

Jonas Blomberg Ghini — Jose Enrique Varela Campelo — LIU-SPS BD WG meeting

ERN



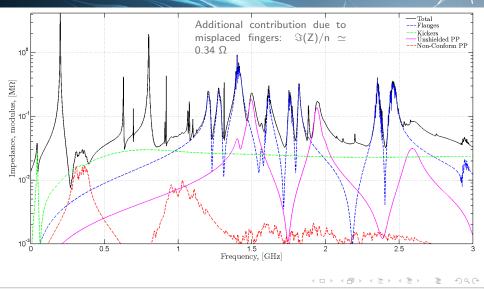
Outline

- 2 Simulations of ideal cases
- 3 Simulations of deviant cases
- 4 Measurements
- 5 Simulations versus measurements
- 6 Comparison between shielded and unshielded pumping port
- 7 Influence on total machine impedance
- 8 Summary and concluding remarks

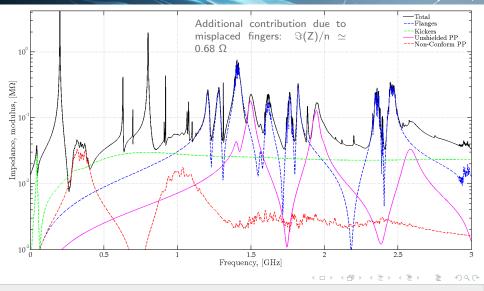
・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Introduction Ideal Deviations Meas SimVSmeas ShieldVSempty Influence Conclusions Effect of shielding when misplaced Comparing empty pumping port with erroneously shielded

Jonas Blomberg Ghini — Jose Enrique Varela Campelo — LIU-SPS BD WG meeting


1 Introduction

Outline


- 2 Simulations of ideal cases
- 3 Simulations of deviant cases
- 4 Measurements
- 5 Simulations versus measurements
- 6 Comparison between shielded and unshielded pumping port
- 7 Influence on total machine impedance
- 8 Summary and concluding remarks

・ロト ・雪 ト ・ヨ ト ・ ヨ ト

Complete longitudinal impedance model Assuming 5% of PP's with gap, 5% of PP's with skewed fingers

Complete longitudinal impedance model Assuning 10% of PP's with gap, 10% of PP's with skewed fingers

1 Introduction

Outline

- 2 Simulations of ideal cases
- 3 Simulations of deviant cases
- 4 Measurements
- 5 Simulations versus measurements
- 6 Comparison between shielded and unshielded pumping port
- 7 Influence on total machine impedance
- 8 Summary and concluding remarks

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- When the shields are working as intended, the longitudinal impedance is negligible, however there is some, very small, contribution to the ℑ(Z)/n
- Several likely deviations from the intended positioning of the fingers have been studied
 - Simulations and measurements are in good agreement
 - Low frequency modes (350–400 MHz), for several cases, have been found and characterised accurately
 - Higher frequency modes (> 1 GHz) have also been found and characterised, however some difficulties have arisen and will be studied further

・ロト ・ 一下・ ・ ヨト ・ ヨト

- Correctly placed shields are 'impedanceless'
- Misplaced fingers can be worse than the unshielded case
- The misplacement percentage is unknown
 - This percentage cannot be very big
 - It may be possible to estimate the percentage based on the synchrotron frequency shift measured before and after the shielding campaign?
 - X-ray imaging can be used to check the position of the fingers
 - 10–20% gives reasonable contribution to the $\Im(Z)/n$

・ ロ ト ・ 雪 ト ・ 目 ト