SPS flanges Simulations & Measurements Update

Fritz Caspers and Jose E. Varela

- Introduction
- The 'Thomas Bohl'
- Simulations
- Measurements
- Next Steps
- Conclusions

Introduction

- We continue to search for possible causes of the suspected 1.4GHz microwave instability in the SPS.
- The 'Thomas Bohl' has been completed.
 - We now have a list of the different flange setups, location and total number.
- The three 'most numerous' flange setups have been simulated.
 - We have now impedance and R/Q.
- More refined measurements have been carried out.
 - Still, one more version of the measurement set-up is under preparation (expected for mid September).

- Introduction
- The 'Thomas Bohl'
- Simulations
- Measurements
- Next Steps
- Conclusions

The 'Thomas Bohl'

							Туре				Isolated		Bellow		Shielded		Dampers										
		159 219							219																		
	Position	QD-QD	BPV-QD	BPCN-QD	BPVC-QD	QF-QF	QF-MBA	MBA-QF	MBA-MBA	VSA-Q	BA-B¢	T-SS1	159-M	PH-QP	V-Q(159	-6B-SS	BPH-QF	145-BPD-SS1	Yes	No	Short	Long	No Bellow	Yes	No	Yes	No
					1		1	1	1																		
SSS 001	10101									1										1		1			1		
	10105	1														_				1	1				1		
	10107	1																	1		1				1		
	10108		1											_	_	_			1			1			1		
	10005																										
SSS 002	10205					1	-												<u> </u>	1	1				1		
	10207						1												1		1				1		
	10209													_			1		0	0		1		1			
	10205	1												_						1	1				1		
000	10207	1																	1	1	1				1		
333 003	10307	1	1											-					1		1	1			1		
	10500		1												_				1			1			1		
SSS 004	10/07						1					_							1		1				1		
	10409						-							-			1			0	-	1		1			
	10405																-					-		-			
SSS 005	10507	1										_							1		1				1		
	10508		1																1			1			1		
	10607						1												1		1				1		
SSS 006	10609																1		0	0		1		1			
	10705	1																		1	1				1		
SSS 007	10707	1																	1		1				1		
	10709		1]								1			1			1		
											ΪI																
	10801							1												1		1			1		
555.008	10805					1														1	1				1		
555 000	10807						1												1		1				1		
	10809																1		1			1			1		
SSS 009	10907	1																	1		1				1		
	10910		1											_	_	_			1			1			1		
SSS 010	11007								1										1		1				1		
	11009													_			1		0	0		1		1			
	44405																										
	11105	1												_		_			<u> </u>	1	1				1		
SSS 011	11107	1			1					1	1								1		1				1		

Disclaimer: The 'Thomas Bohl' does not include the LSSs

The 'Thomas Bohl'

	Flange	1	2	3	4	5	6	Total	
156	QF-MBA	14	14	15	13	13	14	83	
156	MBA-MBA	2	1	2	4	3	2	14	
156	QD-QD	16	16	18	16	17	16	99	
156	QF-QF Non-enamelled	8	8	5	9	9	7	46	
156	QD-QD Non-enamelled	12	13	12	12	14	12	75	
219	BPV-QD	14	15	16	15	17	13	90	Analysed
219	BPH-QF	16/ 12	15/ 7	18/ 10	18/ 12	18/ 11	17/ 11	102/63	combinations

- Introduction
- The 'Thomas Bohl'
- Simulations
 - BPV QD-QD enamelled flange
 - BPV QD-QD non-enamelled flange
 - BPH MBA-MBA enamelled flange
 - Total Impedance so far
- Measurements
- Next Steps
- Conclusions

Simulations

HFSS models for the enamelled QD-QD and MBA-MBA+bellow flanges.

Simulations – QD-QD enamelled flange

Modulus of the voltage for a 1W plane wave source.

Simulations – QD-QD non-enamelled flange

Simulations – MBA-MBA enamelled flange

Simulations – MBA-MBA enamelled flange

Simulations – Total Impedance so far

Freq [GHz]	Num. of elements	Impedance	R/Q
1.41	97	3.68MΩ	3686
1.57	99	50kΩ	178
1.8	75	5.85MΩ	637
1.89	99	544kΩ	594

- Introduction
- Simulations
- MBA-MBA enamelled flange with bellow
 - Previous Wire Measurement
 - Shielded BPH Wire Measurement
 - Reflection Measurements
- Next Steps
- Conclusions

Measurements – Previous Meas.

Last meeting we showed a not so clear wire measurement of a BPH.

Measurements – Shielded BPH

New wire measurement once the pick-up has been shielded.

Rappel: TE and TM resonant mode classification is only valid for 'pillbox' cavities.

Measurements – Reflection Meas.

Measurements – Reflection Meas.

Reflection measurement with a probe. Coaxial mode damping.

Measurements – Reflection Meas.

Reflection measurement with a probe. Q measurement.

Measurements – Transmission Meas.

- Introduction
- Simulations
- Measurements
- Next Steps
- Conclusions

Next Steps

- Simulations
 - Complete all possible flange combinations.
 - Special attention to the QF-QF non-enamelled case.
 - Find a way to overcome current limitations.

- Measurements:
 - Wait for the new set-up. Expected for mid september.

• Suggestions?

- Introduction
- Simulations
- Measurements
- Next Steps
- Conclusions

Conclusions

- We have values for the impedance and R/Q of three of the most numerous flange combinations.
- After shielding the pick-up, the BPH flange measurements are cleaner. A Q of 120 has been measured for the 1.4GHz resonance.
- Simulations and Measurements clearly show a 1.4GHz resonance.
 - Whether or not, this resonance is responsible for the instability is left for discussion.