

SPS de-bunching simulated with Headtail

Theodoros Argyropoulos, Thomas Bohl, Giovanni Rumolo, Elena Shaposhnikova, Carlo Zannini, <u>Helga Timko</u> BE-RF-BR

Where are we now?

Some observational facts...

De-bunching of 25 ns long bunches: Presence of an unknown 1.4 GHz impedance and its "sidebands"

Bunch length vs intensity on flat top for bunched beam: Strong bunch lengthening effect, which cannot be explained by potential-well distortion alone; *microwave instability?*

Instability thresholds don't scale as expected with energy: Microwave instability at flat top could perhaps explain this...

SPS impedance model (1)

5 cavity contributions

fr (MHz)	Rsh (MOhm)	Q	R/Q (kOhm)
200.222	2.86	150	19.07
200.222	1.84	120	15.33
629	0.388	500	0.78
800.888	1.94	300	6.47
1400	unknown	unknown	unknown

SPS impedance model (2)

5 kicker contributions

fr (MHz)	Rsh (MOhm)	Q	R/Q (kOhm)
44	0.026	11	2.36
305	0.0025	12	0.21
570	0.038	1	38.00
1400	0.02	1	20.00
3000	0.018	1	18.00

4

5 kicker contributions

fr (MHz)	Rsh (MOhm)	Q	R/Q (kOhm)
44	0.026	11	2.36
305	0.0025	12	0.21
550	0.032	1.1	29.09
1400	0.014	0.6	23.33
3000	0.014	0.25	56.00

N.B. the over-damped 3 GHz resonator...

5

CERN

SPS impedance model (3)

9 BPM + 1 Zs contribution

fr (MHz)	Rsh (MOhm)	Q	R/Q (kOhm)
265	0.187	260	0.72
295	0.162	240	0.68
890	0.069	490	0.14
1055	0.7	770	0.91
1080	0.205	660	0.31
1200	0.026	620	0.04
1600	1.28	680	1.88
1860	0.59	900	0.66
1960	0.144	2000	0.07
(Zs) 1180	6.6	14000	0.47

De-bunching of "long" bunches

Thanks for Headtail debugging to K. Li, N. Mounet, and G. Rumolo

De-bunching of "long" bunches

The 1.4 GHz impedance could have a high Q value

Cavities, kickers, BPMs & (Zs)

Cavities & kickers

Possible 1.4 GHz characteristics

Theodoros' code fr = (1.35 - 1.45) GHz Q = 5 - 10Rs = (300 - 400) k Ω R/Q < 40 k Ω Headtail Q has a wide range For Q = 10-20 $R/Q = (20-30) k\Omega$ For Q = 600 $R/Q = (10-15) k\Omega$

For the same Q, we find a slightly different Rs. However, we use very different codes and we both find that the results are very sensitive to Rs ($\sim 10-20$ %).

Comparing the two codes

- Agree qualitatively
- Still give up to a factor 2 different results for Rs

We have started benchmarking tests today

The 1.4 GHz peak's Q value

Could be higher than we thought originally Results to be checked with Theodoros' code