

LHC Ion beam at the SPS with Q20 optics

Y. PAPAPHILIPPOU, H. BARTOSIK, T. BOHL, S. CETOUR-CAVE

LIU-SPS-BD Working Group 31/05/2012

Motivation

- Thomas' presentation during LMC 116 (23/11/2012) on "Dispersion of lead ion beam parameters at the SPS flat top – Longitudinal aspects"
 - Dispersion of lead ion beam bunch parameters at SPS flat top due to RF Noise IBS and Space-charge
 - Not a real limitation for LHC but interesting to investigate how to overcome this problem
 - Proposal to try the Q20 optics as an alternative for reducing IBS and spacecharge due to larger beam sizes

Typical LHC-I beam performance

- Transmission of around 70–75%
- Transverse Emittances of 0.7–0.8mm.mrad
- \Box Bunch length of 4ns (4 σ)
- \Box Energy spread of 6.5e-3 (2 σ)

Q20 vs. Q26 optics

New optics "Q20" vs. nominal optics "Q26"

•

- No increase in maximum β -functions but minimum β -functions increased by 50%
- Peak dispersion increased by almost factor of 2
- As ions are injected way below transition for both optics ($\gamma = 7.3$), small influence in slippage factor

Optics	Q20 (low γ_t)	Q26 (nominal)
Working point	(20.29, 20.31)	(26.29, 26.31)
Max. Dispersion	8 m	4.5 m
Max. β-functions	105 m	105 m
Min. β-functions	30 m	20 M
γt	18	22.8
η @ LHC ion flat bottom	-1.57 x 10 ⁻³	-1.68 x 10 ⁻³
Phase advance/cell	3*2π/16	4*2π/16

Q20:

Beam sizes

Space charge

 The incoherent space character to the space character of the space character o	5×10 ⁶	
$\delta\nu_{x,y} = -\frac{N_b r_i}{(2\pi)^{3/2}\beta^2\gamma^3\sigma_z} \oint \frac{1}{\sigma_{x,y}}$	$\frac{\beta_{x,y}}{(\sigma_x + \sigma_y)} ds$	4×10 ⁶
 Reduction of 15% for the optics, due to beam size 	2×10 ⁶	
Parameters	Value	1×10 ⁶
Bunch population	2.4 x 10 ⁸	0
Pb ⁸²⁺ classical radius [m]	5 x 10 ⁻¹⁷	6×10^6
Relativistic γ / β	7.31/0.99	5×10 ⁶
rms Bunch length [m]	0.3	ल 4×10 ⁶
rms Energy spread	3.25x 10 ⁻⁴	SC integr
Transverse norm. emittances [mm.mrad]	0.8	3×10 ⁶

Tune-shift	Q20 (low γ_t)	Q26 (nominal)	
Horizontal	-0.08	-0.09	
Vertical	-0.13	-0.15	

Intra-beam scattering calculation

- Using Piwinski formalism for calculating growth rates due to IBS
- A function of emittances but also dispersion invariants, i.e. optics functions
- Note that vertical dispersion is considered to be zero

the second s	the state area the
Parameters	Value
Bunch population	2.4 x 10 ⁸
Pb ⁸²⁺ classical radius [m]	5 x 10 ⁻¹⁷
Relativistic γ / β	7.31/0.99
rms Bunch length [m]	0.3
rms Energy spread	3 . 25x 10 ⁻⁴
Transverse norm. emittances [mm.mrad]	0.8

$$\begin{split} &\frac{1}{T_p} = A \left\langle \frac{\sigma_H^2}{\sigma_p^2} f(a,b,q) \right\rangle, \quad \frac{1}{T_x} = A \left\langle f(\frac{1}{a}, \frac{b}{a}, \frac{q}{a}) + \frac{H_x^2 \sigma_H^2}{\varepsilon_x} f(a,b,q) \right\rangle, \\ &\frac{1}{T_y} = A \left\langle f(\frac{1}{b}, \frac{a}{b}, \frac{q}{b}) + \frac{H_y^2 \sigma_H^2}{\varepsilon_y} f(a,b,q) \right\rangle, \\ &A = \frac{r_i^2 c N_b}{64\pi^2 \beta^3 \gamma^4 \varepsilon_x \varepsilon_y \sigma_z \sigma_p} \\ &\frac{1}{\sigma_H^2} = \frac{1}{\sigma_p^2} + \frac{H_x^2}{\varepsilon_x} + \frac{H_y^2}{\varepsilon_y} \\ &a = \frac{\sigma_H}{\gamma} \sqrt{\frac{\beta_x}{\varepsilon_x}}, \qquad b = \frac{\sigma_H}{\gamma} \sqrt{\frac{\beta_y}{\varepsilon_y}}, \qquad q = \sigma_H \beta \sqrt{\frac{2d}{r_0}} \\ &f(a,b,q) = 8\pi \int_0^1 du \frac{1-3u^2}{PQ} \left\{ 2\ln \left[\frac{q}{2} \left(\frac{1}{P} + \frac{1}{Q} \right) \right] - EulerGamma \right\} \\ &P^2 = a^2 + (1-a^2)u^2, \qquad Q^2 = b^2 + (1-b^2)u^2 \end{split}$$

Transverse IBS growth rates

 Decrease of the growth rate especially in the horizontal but also vertical plane for the Q20 optics, mainly attributed to higher beam sizes

Longitudinal IBS growth rates

• Longitudinal rate is negative, i.e. there is damping

Mainly follows the dispersion evolution around the arc

• Less damping for the Q20 optics

31/05/2012

IBS growth times

- Computing rates for just the input transverse and longitudinal emittances (average around the ring of previously plotted growth rates)
- 40 to 50% increase of growth times for the Q20 optics
- Note again that the IBS calculation foresees that there is damping of the longitudinal emittance

Growth rates	Q20	Q26	Ratio
Horizontal [s]	393	254	1.5
Vertical [s]	332	231	1.4
Longitudinal [s]	-219	-143	1.5

Machine studies with Q20 optics

- Prepared LHCMDION cycle with "Q20" optics
- Flat bottom length of 18.620ms allowing the injection of 6 batches of I-LHC Intermediate Beam
 - Injection kicker strength had to be increased with respect to the Q26 optics (less kick enhancement due to reduced strength of neighboring quad)
 - Rise time of the kicker gets increased and incompatible with 200ns bunch spacing
 - □ It has been increased to 400ns (6 batches)
- Transition timing adapted to around 850ms after start of ramp
- Two short parallel MDs on 30/11/2011 and 06/12/2011
 - First one dedicated to setting up and longitudinal beam observations
 - Second dedicated to working point scanning and transverse measurements

MD on 30/11/2011 setting up

Managed to get conditions comparable to the ones of the nominal optics but with higher loss rate

Similar emittances (0.7–0.8mm.mrad at the flat top)

MD on 30/11/2011 Longitudinal observations

- Bunch length reduces with time (as IBS foresees!)
- Effect of RF noise already studied for Q26 (reducing damping by using generator) but not in that case.
- At first sight, bunch length and amplitude evolution quite similar in both optics

MD on 06/12/2011

- Scanned several working points
- Observed horizontal blow up when approaching the horizontal integer
- Loss profile changed to parabolic
- Transmission improved (reduction of IBS?)

Summary

- New low transition energy optics proposed as alternative for mitigating IBS and space-charge effects for LHC ion beam in the SPS
- Simulations predict lower space charge tune-shift and even more impressive reduction on IBS growth rates
- Predicted damping of longitudinal emittance actually observed in measurements
- First measurements did not show difference on the longitudinal beam characteristics
- Transverse plane behavior seems to indicate that there is indeed a combination of space-charge and IBS limiting the ion

Perspectives

- Simulate IBS effect with other formalisms (Bjorken-Mtingwa, Bane,...) for comparison
- Try to use multi-particle Monte-Carlo code now available
- Repeat the same exercise for protons (IBS should be indeed visible)
- Analyze further obtained measured data (longitudinal and transverse)
- Continue machine developments for disentangling effect of RF noise, IBS and space-charge
 - Try different injected emittances (longitudinal and transverse)
 - Try to fit theory on measurements