Lessons from SPS studies in 2010

E. Shaposhnikova

Chamonix'11

session 09: LHC injectors upgrade

Outline

- Review of the SPS MD studies in 2010
- Expectations for possible SPS upgrades

Acknowledgments:

SPSU SG: G. Arduini, J. Bauche, C. Bhat, F. Caspers, S. Calatroni, P. Chiggiato, K. Cornelis, S. Federmann, E. Mahner, E. Metral, G. Rumolo, B. Salvant, M. Taborelli, C. Yin Vallgren, F. Zimmermann, H. Bartosik, Y. Pappaphilipou + speakers

BE/RF: T. Argyropoulos, T. Bohl, E. Ciapala, H. Damerau, W. Hofle, E. Montesinos, G. Papotti (OP), J. Tuckmantel, U. Wehrle, G. Hagmann, P. Baudrenghien, S. Hancock,...

LIU/TF: R. Garoby, B. Goddard, V. Mertens

TE/ABT: M. Barnes, B. Balhan, R. Barlow, J. Borburgh, BE/BI

PS&PSB teams and OP shifts for help in MDs

Questions

- 1. Source of limitations/bottlenecks (up to ultimate intensity)
- 2. Possible cures and mitigation measures
- 3. p/b and emittance as a function of the distance between bunches today and after upgrade
- 4. What should be done for delivering smaller transverse emittances at ultimate beam current?

Known intensity limitations and 2010 studies

Single bunch

- TMCI (transverse mode coupling instability)
- loss of Landau damping
- space charge
- longitudinal instability
- Studies with high (twice ultimate) intensities, nominal and small transverse emittances; γ_t =22.8 (nominal) and γ_t =18 ("low") optics

Multi-bunch

- e-cloud → talk of J.M. Jimenez
- beam loss (many reasons)
- longitudinal coupled bunch instabilities
- beam loading in the 200 MHz and 800 MHz RF systems
- heating and outgassing of machine elements, septum (ZS) sparking
- Studies with nominal 25, 50, 75, (150) ns spaced LHC beam, ultimate (injected) 25&50 ns spaced beam

Very high intensity single bunch

- Many parallel MD sessions
 (B. Salvant et al.) → TMCI
- Injected bunch:
 - intensity up to 3.5x10¹¹
 - ε_{H/V} ~1.3 μm, then 2.5 μm (to reduce losses and emittance blow-up in SPS)
 - ε_L =0.35 eVs, τ=3.8 ns (nominal LHC)
- Long. instability $N > 1.4 \times 10^{11}$
- Issue with MOPOS before BI upgrade at the end of run

Transverse Mode Coupling Instability (TMCI)

B. Salvant et al.

$$\rightarrow$$
Threshold $\sim 1.6 \times 10^{11}$ for $\xi_V \sim 0$ (close to prediction from the SPS transverse impedance model)

- TMCI threshold $\sim \epsilon_L |\eta|$, $\eta = 1/\gamma^2 1/\gamma_t^2$
- Cures:
 - higher chromaticity $\xi_{\rm V}$
 - higher η (lower γ_t)
 - larger ε_{l} (capture losses)
 - impedance reduction (if known)
 - wide-band FB (W. Hofle & LARP)
- End FB intensity $(2.25-3.3)x10^{11}$ for $\xi_V = (0.05-0.3), \xi_H = 0.25$
- Emittance blow-up?

Transverse emittance measurements in the SPS

- Measurements during the cycle and along batch(es) are essential to study origin of emittance blow-up (if any)
- Measurements with Wire Scanners (WS) in 2010:
 - Average for all bunches (no bunch-by bunch)
 - One measurement per cycle (difference between "in" & "out")
 - First measurement at 10 ms after injection
- BI improvements for 2011 (L. Jensen):
 - new electronics for 2nd WS (linear, now broken) with possibility to gate acquisition (over 50-100 ns, as in the past)
 - cross-calibrations (WS 1&2, "in"&"out", PS&LHC)
 - expert involvement (settings are critical) plus fellow(?)
 - BGI (rest gas) monitor continuous beam profile measurements during cycle, average for all bunches over 20 ms

Transverse emittance vs bunch intensity for a single bunch

- •Data from single bunch MDs in 2010 (C. Bhat, B. Salvant et al.,) + 50 ns beam (PS Double Batch, E. Metral et al., 2008)
- •Settings optimised up to 2x10¹¹
- • ξ_V in range 0.0-0.3, ξ_H =0.25

nominal int. $\epsilon_{H/V}$ ~1.2 µm ultimate int. $\epsilon_{H/V}$ ~3.0 µm

Linear fit:

H: ε = -1.14+2.22 (N/10¹¹) V: ε = -1.03+2.17 (N/10¹¹)

→ Emittance blow-up above space charge limit (N/ε=const)

SPS MDs with LHC beams in 2010 - v1.9

Week	Date	Spacing	Max. inj. intensity	Comments/Results
17	27-29.04	25 ns	nominal	"scrubbing", dedicated SC, 1-4 batches, low beam loss (5%)
22	02-03.06	25 ns	ultimate	36 h, part. dedic. SC, 1-3 batches
29	20-21.07	25 ns	nominal	practically lost
35	03-04.09	50 ns 25 ns	ultimate nominal	8 h, 4 batches
42	19-20.10	25 ns 50 ns	nominal nominal	36-72 bunches; dedicated SC → 1-2 batches
45	09.11	50 ns	nominal	floating MD
46	17-18.11	75 ns	nominal	

Ultimate 25 ns beam

Bunch intensity on flat top decreases with number of batches: 1.62×10^{11} -1 batch, 1.51×10^{11} - 3 Beam losses: $30\% \rightarrow 20\%$

- Large efforts in whole inject. chain
- Up to 1.9x10¹¹/bunch injected, $\epsilon_L \sim 0.4$ eVs, $\epsilon_{H/V} \sim 4.5/5$ µm
- Emittance blow-up 5 \rightarrow 10 μm (larger in H-plane and for more batches) with $\xi_{H/V}$ =0.2/0.3
- Voltage increased during cycle

 0.65 → 0.75 eVs to reduce losses
 & reduced on flat top: 7.2→5.5 MV
 to reduce outgassing and heating in kickers
- Beam unstable longitudinally on flat bottom with 12 bunches
- 36 hours MD stopped due to MKE heating to 70 deg

Ultimate 50 ns beam

Bunch intensity on flat top vs injected bunch intensity

- Only 8 h MD at the end of block in || to LHC set-up (150 ns beam)
- 1.8x10¹¹/bunch injected → maximum
 1.52x10¹¹/bunch on FT, 15% losses
 for ultimate intensity
- Nominal: $\epsilon_{H/V}$ =2.7/2.8 μm on FT ultim.: injected $\epsilon_{H/V}$ = 3.2/3.9 μm
- Voltage programme as for 25 ns nominal beam
- Increase in ξ_{H/V} from (0.05/0.18) had no effect on losses
- → More time for optimisation in 2011

Nominal LHC beams in 2010 Transverse emittance vs bunch intensity

- Nominal 50&75 ns beam: extracted emittances determined by injected with no/small blow-up
- Nominal 25 ns beam: blow-up PS ext. $\epsilon_{H/V}$ =2.0/1.5 μ m \rightarrow SPS (t=0.55 s) $\epsilon_{H/V}$ = 3.2/3.3 μ m flat top: $\epsilon_{H/V}$ = 3.2/3.6 μ m
- Larger emittances in V-plane
- → 50 ns and 75 ns beams: one can hope to get single-bunch emittances (~3 µm for ultimate intensity)

25 ns beam - can hope for same after e-cloud mitigation

Transverse emittances vs bunch spacing for the same total and bunch intensities

50 ns spacing

No emittance increase with n batches, small (<10%) blow-up during the cycle

25 ns spacing

Vertical emittance increase with n batches, measurement at 0.55 s (26 GeV)

e-cloud vs bunch intensity for 25&50 ns spacing (MD w35)

- A factor 3-5 difference between 25 ns and 50 ns beams
- Some increase of e-cloud current with intensity for 50 ns beam

Nominal LHC beams: beam quality issues

• 25 ns beam

- low (5%) losses (with low ξ =0.1)
- heating and outgassing of kickers: MKDH3, MKP and MKE limitation for dedicated MD cycle (or dedicated LHC filling)
- no limitations from ZS after change of settings by ABT group

50 ns beam

- beam stability issue: need of controlled emittance blow-up in addition to the 800 MHz RF

Bunch length on flat top

25 ns nominal beam, 4 batches, V_{200} =5.5 MV, V_{800} =0.5 MV, blow-up

T. Argyropoulous et al.

Bunch length variation on flat top: effect of beam loading in the 200 MHz RF on emittance blow-up by band-limited noise

T. Argyropoulos et al., HB2010

$$V = V_t^{200} \sin \phi + V_t^{800} \sin(4\phi + \Phi_2 + \Delta\phi_2),$$

$$\Delta \phi_2 = 4\Delta \phi_s^{meas} \left(1 + 4 \frac{V_t^{800}}{V_t^{200} (-\cos \phi_s)} \right)$$

Longitudinal multi-bunch instability: 50 ns beam, 2 RF, no controlled blow-up

Short PS bunches are unstable in SPS (450 GeV/c)

Long PS bunches

Multi-bunch instability due to loss of Landau damping?

 Narrow window for the injected parameters: losses increase for longer bunches and beam is unstable for lower emittance (blow-up required for 50&75 ns beams)

Intensity limitations for 25 ns beam - 2010

intensity /bunch	Origin	Leads to	Present/future cures/measures	
0.2x10 ¹¹	longitudinal multi bunch instability due to loss of Landau damping (longitudinal impedance)	- beam loss during ramp - bunch variation on FT	(FB, FF, long. damper) - 800 MHz RF system - emit. blow-up \rightarrow RF - low γ_t optics	
0.7x10 ¹¹	e-cloud due to the StSt vacuum chamber (δ_{SEY} =2.5, 1.3 is critical for SPS)	dynamic pressure risetransv. (V) emit. blow-upinstabilitieslosses (via high chrom.)	- scrubbing run $(\delta \rightarrow 1.6)$ - high chrom. $(0.2/0.4)$ - transv. damper (H) - $(50/75 \text{ ns spacing})$ - coating $(\delta \rightarrow 1.0)$	
1.3x10 ¹¹	not known exactly e-cloud, impedance, space charge, beam loading	- flat bottom/capture beam loss (>5%)	- (lower chromaticity) - WP, RF gymnastics - collimation	
1.5x10 ¹¹	beam loading in 200 MHz RF system	- voltage reduction on FT - phase modulation	- feedback & FF - RF cavities shortening	
1.6x10 ¹¹	TMCI (transverse mode coupling instability) due to transverse impedance	- beam losses - emittance blow-up	 higher chromaticity low γ_t optics transverse high bw FB 	

Low γ_t - solution for everything?

- Successful MDs with a single bunch (H. Bartosik, Y. Papaphilippou et al.): γ_t =22.8 \rightarrow 18, increase in η : 2.86 @26 GeV/c and 1.6 @450 GeV/c
- Expected increase in beam stability for the same bunch parameters N_{th}~ η for TMCI (observed!) and longitudinal instabilities (to be seen in 2011)
- For the same parameters: $V \sim \eta$. Already maximum voltage (7.5 MV) is used now for extraction to LHC \rightarrow longer bunches for the same emittance and voltage \rightarrow 200 MHz RF upgrade should help
- But probably emittance blow-up for the same intensity can also be reduced: loss of Landau damping $N_{th} \sim \epsilon^2 \eta \tau$. Since $\tau \sim (\epsilon^2 \eta/V)^{1/4} \to \epsilon \sim \eta^{-1/2}$ and $\tau = const$ for V=const

Issues:

- If LHC itself needs higher longitudinal emittances at injection
- Fast cycles in SPS

. . .

Some MD results for low γ_t

No TMCI up to 3.2×10^{11}

H. Bartosik et al.

Small transverse emittances

- FB: no transverse blow-up for
 - $\epsilon_{H/V} = 2.0/2.3, 2.6 \times 10^{11}$
 - $\varepsilon_{H/V} = 2.5/2.6, 3.3 \times 10^{11}$

but too low voltage (1.8 MV) \rightarrow losses (10-15%) and longer bunch (~30%?)

- Acceleration of 2.5x10¹¹
 - 5% capture losses
 - $\varepsilon_{H/V} = 2.4/2.9,$
 - $-\tau = 1.5 \text{ ns on FT}$
- → Studies with nominal and ultimate LHC beams (long. beam stability)

What is the SPS space charge limit at 26 GeV/c?

Single bunch data with nominal (γ_t = 22.8) and "low γ_t " optics (γ_t = 18)

 \rightarrow space charge limit $\Delta Q_{sc} > \sim 0.13$ (nominal LHC beam $\Delta Q = 0.05$)

→ preliminary results, accurate measurements in 2011

LHC beams in SPS

		SPS @ 450 GeV/c (intensity maximum injected minus losses)					
Beam parameters	nom.	nom.	nom.	2010	2010	2010	
bunch spacing	ns	25	50	75	25	50	indiv
max bunch intensity	1011	1.2	1.2	1.2	1.5	1.5	3.2
number of bunches		4x72	4x36	4x24	3 x72	4x36	1
total intensity on FT	1013	3.5	1.7	1.2	3.2	2.2	0.03
long. emittance	eVs	0.7	0.5	0.4	0.8	0.6	0.4
norm. h/v emittance	μm	3.6	2.0*	2.0*	~10	>3.2/3.9	6.0

^{*} double batch injection in PS: 1.1/1.4

Main lessons/results from 2010

- Nominal 25 ns beam in good shape: low beam losses (5%) with low $\xi_v = 0.1$
- Ultimate (injected) beam needs studies
 - 25 ns: large losses and emittances, instabilities
 - 50 ns: 15% losses, 1.5x10¹¹/bunch at 450 GeV/c in 4 batches
- TMCI threshold is at ultimate intensity (low ξ). Ultimate single bunch accelerated to 450 GeV/c with low loss and ξ_v , but with some emittance blow-up. More problems for small injected emittances.
- New low γ_t optics: promising results for beam stability and brightness
- Loss of Landau damping for small inj. long. emittances, bunch length variation on flat top after controlled emittance blow-up in 2 RF

Limitations for dedicated LHC filling/MD: MKE, MKP, MKDH3 heating/outgassing MDs issues: transverse emittance measurements, time allocation, data analysis

Conclusions - Q&A

- p/b and emittance as a function of the distance between bunches today and after upgrade
 - now one can hope to get single-bunch emittances for 50&75 ns beams with 3 μ m for ultimate intensity; probably less (2.5 μ m) with low γ_t (RF voltage limit to be seen); > 4 μ m for 25 ns ultimate beam
 - after upgrades (e-cloud and impedance reduction) one can hope to be at the space charge limit (\sim 2.5 µm for ultimate intensity) for 50&25 ns beams
- what should be done for delivering smaller transverse emittances at ultimate current?
 - studies, smaller PS beam, improvement of trans. emittance measurement
 - e-cloud mitigation, transverse impedance reduction, strong transverse FB
 - low γ_t optics with 200 MHz RF upgrade

Spare slides

Some data for space charge

- ppbar time $\Delta Q = 0.07$
- Protons at 14 GeV/c (H. Burkhardt et al., PAC 2003) ΔQ =0.14/0.18 with 10% losses (N=1.2x10¹¹, 3 ns, $\epsilon_{H/V}$ =3.43/3.75 μm)
- Nominal LHC bunch $\Delta Q = 0.05$, ultimate $\Delta Q = 0.07$
- 50 ns nominal intensity beam with single batch injection in PS (2008): $\epsilon_{H/V}$ =1.1/1.4 μm at 450 GeV/c (E. Metral) →ΔQ=0.15
- Recent studies with high intensity single bunch (B. Salvant et al., 2010) $2.5x10^{11} \rightarrow \Delta Q=0.1$ for $\epsilon=3.5~\mu m$
- LHC ions in the SPS: γ =7.31, N_e=1.5x10¹⁰, (50% more than nominal), ϵ =0.5 μ m (1/2 nominal). In DR Δ Q=0.08 \rightarrow Δ Q=0.24... but with 25% losses
- \rightarrow Space charge limit alone seems to be more close to $\Delta Q=0.15$

Interplay with other effects (multi-bunch) is probably also important

e-cloud build-up for low emittances

C.Octavio Domínguez, Giovanni Rumolo, Frank Zimmermann

e-cloud build-up for low emittances

C.Octavio Domínguez, Giovanni Rumolo, Frank Zimmermann

SPS scrubbing run in 2002

First measurement in SPS 10 ms after injection - G. Arduini

Possible issues with controlled longitudinal emittance blow-up

50 ns beam

Non-uniform emittance blow-up due to beam loading in a double RF system

75 ns beam

Non-uniform emittance blow-up and beam instability (?) for short injected bunches

T. Argyropoulous et al.

Nominal and low γ_t optics

(H. Bartosik, Y. Papaphilippou)

- Nominal working point for LHC beams (Q26): $Q_x=26.13$, $Q_y=26.18$, $y_t=22.8$, $\eta(@26GeV)=0.63E-3$,
- maximal horizontal dispersion ~4.8m

- New working point for LHC beams (Q20): $Q_x=20.13$, $Q_y=20.18$, $y_t=18$, $\eta(@26GeV)=1.8E-3$,
- maximal horizontal dispersion ~8m