Effect of the working point on the resistive wall multibunch instabilities in the SPS

N. Mounet & E. Métral

Thanks to W. Höfle

N. Mounet & E. Métral - SPS RW instability - SPSU 12/5/2011

SPS RW multibunch instability

 With a 25 ns beam of 4e13 p⁺ at 26 GeV/c (details to be checked), in 1999 W. Höfle found instability rise times of (SPSU 14/04/2011):

 $\tau_x = 30$ turns and $\tau_y = 18$ turns

 Recently (2009 & 2010 MDs, 25ns & 72 bunches, 9e12 p⁺) we found much larger rise times:

> with $\xi_x = -0.25$, $\tau_x \sim 500$ turns, with $\xi_y = -0.1$, $\tau_y \sim 230$ turns.

- Such a large discrepancy not so surprising: intensity is different, and many things have changed in the machine, as well as beam parameters.
- We investigate here the part of the discrepancy due to a change in working point.

Effect of the working point

- In 1999, $Q_x = 26.62 \& Q_y = 26.58$, vs. resp. $Q_x = 26.13$ and $Q_y = 26.18$ nowadays (with LHC beam).
- Resistive-wall impedance of the SPS beam pipe gives instability rise times mainly related to the real part of the impedance at the first unstable betatron line, which is located at:

 $(1-[Q_x])f_{rev} =$ 16 kHz in 1999 vs. 38 kHz now $(1-[Q_y])f_{rev} =$ 18 kHz in 1999 vs. 35 kHz now

• At those frequencies:

 $\Re \left\{ Z_x \left(\left(1 - \left[Q_x \right] \right) f_{rev} \right) \right\} = 100 \text{ M}\Omega/\text{m in 1999 vs. 50 M}\Omega/\text{m now} \\ \Re \left\{ Z_y \left(\left(1 - \left[Q_y \right] \right) f_{rev} \right) \right\} = 190 \text{ M}\Omega/\text{m in 1999 vs. 100 M}\Omega/\text{m now}$

• W. Höfle obtained resp. 120 & 200 M Ω /m. NOTE: THIS IS NOT THE EFFECTIVE IMPEDANCE.

N. Mounet & E. Métral - SPS RW instability - SPSU 12/5/2011

Effect of the working point

- Exemple: with Sacherer formula, for 924 equidistant bunches separated by 25ns ($\sigma_{z,rms}$ =0.19 m, Nb part/bunch=1e11, γ =27.7, zero chromaticities) we get:
 - At the 1999 working point:

 $\tau_x = 24$ turns $\tau_y = 13$ turns

At the current working point:

 $\tau_x = 48$ turns $\tau_y = 23$ turns

 $\rightarrow \ \sim$ a factor 2 can be explained from the change in working point ...