

POSSIBLE REDUCTION OF TRANSITION ENERGY IN THE SPS

Yannis PAPAPHILIPPOU, BE/ABP

Thanks to Gianluigi ARDUINI and Hannes BARTOSIK

SPS Upgrade study team meeting 29/07/2010

Outline

The background

- Benefits for reducing transition energy in the SPS
- Old proposals and results
 - Extra quadrupoles
 - Resonant tune

SPS Hardware constraints

Quadrupole gradientSextupole strengths

"Resonant" arc Optics solutions and parameterization Doublet arc cells Optics solution and phase advance scan Negative Momentum Compaction arc cells **Optics** solutions Summary and perspectives

Reducing the transition energy

Transition energy reduction benefits

□ Instability thresholds (e.g. microwave, TMCI) are usually linear with the slippage factor,

$$\eta = \frac{1}{\gamma_t^2} - \frac{1}{\gamma^2}$$

i.e. can be increased by lowering transition energy (almost quadratically for high energies)
Higher slippage factor translates to faster

- longitudinal motion, i.e. faster damping times for instabilities and longitudinal beam manipulation
- For constant synchrotron frequency, increasing slippage factor allows lowering RF voltage (but larger bunch length)
- High intensity beams can be injected in the SPS above transition avoiding losses and operational complexity of transition jump scheme

A very interesting option for reaching and building necessary parameter margin in order to achieve ultimate LHC beam density and beyond (LHC upgrade).

Transition energy manipulation

Transition energy (or momentum compaction factor) is defined as $\frac{1}{\gamma_t^2} = \alpha_p = \frac{1}{C} \oint \frac{D(s)}{\rho(s)} ds$

The higher the dispersion oscillation in the bends, the lower the transition energy

Quadrupoles

Note also that, for FODO cells, $\gamma_t\approx Q_x$, meaning that lowering the transition energy means lowering the horizontal tune

SPSU study group - YP

Past proposals: Extra quadrupoles P. Collier (ed.), CERN/SL/97-07/DI, 1997

- Preliminary studies suggesting introducing 2 pairs of small quadrupoles evenly spaced in all SPS arcs
- If separated by $\mu_x, \mu_y = (2k+1)\pi$, there is no effect in the tune and optics (every two cells for minimizing orbit distortion)
- Other applications include raising transition energy at extraction (shortening LHC bunches), faster transition jump, smoothing dispersion (increasing momentum aperture) or tune feedback loop
 K. Cornelis, Chamonix 1999

Maximum Gradient, G	7	T/m
Field Length, L	0.3	m
Inner Radius, r	44	mm
Ampere Turns, NI	5600	At
Coil Conductor (water cooled)	8x8	mm^2
Coil Length ,l	35	m
Coil resistance, R	58	mΩ
Dissipated Power, P	2.3	kW
Power Supply	12V,200A	

Series of investigations were necessary for qualifying the feasibility of the scheme including machine experiments with **"resonant tune"** of 24 in the SPS

Resonant tune

G. Arduini et al., CERN/SL-Note 98-001 (MD), 1998

- By setting the SPS integer tune to a multiple of 6, large dispersion wave can be introduced (dispersion becomes even negative) by overall reducing transition energy
- Successfully establishing cycle in the SPS and measuring dispersion very close to the one of MAD
- 3-fold increase of the slippage factor can be achieved (model)
 - "Difficult" beam conditions

	Q_h	Q_v	γ_{tr}	$\eta~(10^{-3}$
A UNIC	24.18	24.22	18.54	1.61
	24.29	24.32	19.59	1.30
	26.62	26.58	23.23	0.551

Lower transition and microwave instability

T. Bohl et al., EPAC 1998

Machine experiments at the SPS showed reduction of the unstable modes amplitudes (apart from 200MHz) by a factor of 1.5-2.5 when running with lower transition energy

SPS quadrupoles

216 quadrupoles (102 QF, 100 QD, 6 QFA and 8 QDA)
 Maximum gradient of 22T/m, corresponding to a normalized gradient of 0.01466m⁻²

Normal operation necessitates almost the full gradient @ 450 GeV

D. Tommasini CERN/TE-Note-2010-003

Number of magnets	
Year of 1 st operation	1976
Maximum gradient [T/m]	22
Physical vertical aperture [mm]	88
Yoke assembly [Solid,Laminated,Welded,Glued]	L,W
Coil technology [Copper,Aluminium,Glass-epoxy,Mica,Other]	C,G
Maximum voltage to ground [V]	3450
Operation	Cycled
Maximum cooling water velocity [m/s]	3.6
Operational temperature [C°]	40

SPS sextupoles

M. Giesch, CERN/SPS/80-3/AMS, 1980

	MAIN PARAMETERS OF SEXTUPOLES		LSFN	LSDN
Basic	: Nominal rms current Peak Current	[A] [A]	350 500	350 450
	* Strength at peak current 1) Sextup. $\int a_3 d\ell (a_3 = B/r^2 = B''/2)$	[T/m]	85.8	176.6
	* Magnetic length Aperture, radius of inscr.circle	[m] [mm]	0.435 60.7	0.426 44.0
Core	: Length	[m]	0.4	0.4
				9

54 "focusing" and 54 "defocusing" sextupoles in two (three for F) families (24 and 30)

- Maximum normalized sextupole strength of 0.13m⁻³ for LSFs and 0.28m⁻³ for LSDs
- Around 80% and 60% in operational conditions
- Other elements (correctors, skew quadrupoles, octupoles, extraction elements...) need also to be checked

Resonant arc: <u>Cell phase advance of 3/16</u> Very smooth optics for cell phase advance of 3/16 Ring tunes of 20.25 shown here, but vertical tune can be varied to different integers Dispersion max. slightly increased to 8m (from 5m) but beta max. below 110m

- Quad. strengths reduced by almost 30%
- Same trend for natural chromaticity (-23) and chromaticity sextupole strengths
- Transition energy reduced to 18 (from 23), i.e. slippage factor increased by a factor of 3.5

Resonant arc: Cell phase advance of 2/16

- Smooth optics for cell phase advance of 2/16
- Ring tunes of 13.8, with dispersion max. at 16m (can be further reduced) and beta max. around 120m
- Quad. strengths reduced by 50%
- Very low natural chromaticity of-14 (from -33) and chromaticity sextupole strengths

Transition energy reduced to 12.6, i.e. slippage factor increased by a factor of 11

The FODODOFO cell

- By flipping the polarity of the last two quadrupoles in 2 consecutive arc cells (from FODOFODO to FODODOFO), a larger dispersion oscillation is produced, providing lower transition energy (lowering overall arc phase advance)
- The optics is quite smooth and tunable, although beta functions get slightly larger
 Necessitates bipolar power supplies in all quads and some additional ones to provide flexibility for dispersion suppression

Transition energy dependence

Transition energy between 4 to above 20
Lower transition energy for lower horizontal phase advances, as expected
Almost no dependence on vertical phase advance
Good compromise at phase advances of around 0.2/cell in both planes (transition energy of 12)

Beta functions

Low vertical and moderate horizontal phase advance for lower horizontal beta

 Vertical beta has opposite trend but smoother variation (apart from extremities)

Dispersion and quad strengths

Low dispersion values for horizontal phase advances above 0.15, and dropping rapidly at around 0.2

л^

Overall low quadrupole gradient apart for large phase advances in both planes

Imaginary transition energy

Excite dispersion oscillations by powering individually central focusing quad in two consecutive FODO cells

 High imaginary transition energy of 200i for this example

- Dispersion maximum below 5m, but high beta function maxima (300m)
- Focusing quadrupole gradients quite high (30% more than max. allowed) as horizontal phase advance is large
 Quite academic...

Summary and perspectives

- Several optics solutions for manipulating the transition energy of the SPS are possible
- "Resonant arc" seems the most promising as it does not necessitate any hardware change
- Optics looks smoother as compared to previous attempts
- This option can be tested experimentally in the SPS
- FODODOFO optics looks very good with respect to tunability, aperture and quadrupole strengths
- Requires hardware changes (extra bi-polar power convertors)
- Needs still further optics optimization for dispersion suppression and general ring tuning
- High imaginary transition energy can be achieved but aperture and quadrupole strengths are a serious obstacle