Studies of the SPS internal dump (TIDVG) for current and future proton beams

Alexander Stadler – EN/STI/TCD

SPSU Meeting

4th of August 2009

Outline

- A brief overview The TIDVG & previous study
- Vacuum outgassing problems during operation
- Performance with current proton beams
- Performance with PS2 beams
- A slightly modified design
- Conclusion and different scenarios

Previous study

- Conducted by Mattias Genbrugge and presented to SPSU in 2008 by Yacine Kadi
 - Researching the history of the present dump design
 - Exploring causes of the outgassing issue
- This presentation
 - will follow up on the outgassing issue
 - will present the operation limits of the dump (current + PS2 beams)

The TIDVG

- The <u>Target Internal Dump Vertical Graphite</u>
 - For energies from 105 to 450 GeV
 - Located in LSS1
 - About 5m long; Core diameter 0.3 meters
 - Installed in cast iron shielding

The TIDVG design

•An internal beam dump

The TIDVG design

Graphite blocks:

Titanium coating + Titanium foil

2.5m Graphite 1m Antico

0.5m copper

0.3m Tungsten

The TIDVG History

- Three Dumps Produced
 - Dump #1 installed in 1999/2000
 - Foil got Damaged and was blocking the aperture
 - Dump #2 was modified (better coating no foil)
 - Dump #1 replaced by #2 in 2006/2007
 - <u>Dump #3</u> was not modified (not ready as spare at the moment)
 - Dump #1 Out of order In Storage (radioactive)

Outline

- A brief overview The TIDVG & previous study
- Vacuum outgassing problems during operation
- Performance with current proton beams
- Performance with PS2 beams
- A slightly modified design
- Conclusion and different scenarios

As presented by Yacine in 2008 (slide by Mattias)

II. Operational Problems

After commissioning in March 2000:

• Pressure peaks from the moment the beam was dumped.

(Repetitive dumping of 9 . 10¹² protons per cycle at 440 GeV.)

Consequence:

=> Shutdown of the beam due to pressure interlock system.

June 4th, 2008

Part II: TIDVG design and operational problems

26

Possible causes (as presented in 2008)

- Outgassing originating from: Tungsten or Graphite blocks (Antico and copper are solid metals)
- Outgassing is driven by
 - Temperature
 - Internal concentration of pollutants

- Pressure rise due to e-clouds (presented with a ?)
 - "No proof! Only hints:"
 - "It is inconclusive until now, but it seems not very likely."

Looking for the cause of the outgassing

- Significant steps during production and installation of the Dump:
 - Vacuum firing of the graphite (1000°C for 1h)
 before assembly & welding
 - Bakeout with pressurized water @ 150°C
 - After complete assembly & welding (on surface)
 - After installation (in the tunnel)

Looking for the cause of the outgassing

- Significant observations and actions after installation
- Dump #1 got conditioned in-situ with beam scraping during MDs
 - Rising the temperature of the Dump and causing the outgassing on purpose (beam scraping)
 - The outgassing rate of the dump got less over time
 - Every dump-cycle is improving the dump (less outgassing)
- After installation of Dump #2 the outgassing during dumps was again high.
 - Dump #2 now in use for ~2 years

Looking for the cause of the outgassing

- Performing a bakeout test in the lab to answer the questions:
 - Is the current bakeout temperature sufficient?
 - How big is the outgassing due to high temperatures?
 - Outgassing of water and/or hydrocarbons?
 - Which material (Graphite or Tungsten) is the origin?

Tests performed with support from TS/VSC for setting up the vacuum & bakeout equipment.

Bakeout test on Dump #3

Recording:

- Pressure
- Gas composition
- •Temperature (in the vacuum directly on the blocks)

Bakeout test on Dump #3

- Initial conditions:
 - Dump was stored under gas atmosphere (like a proper spare, although not ready to use as spare yet)
 - Dump got opened up and exposed to atmosphere for several months to get a full absorption of water

1st long Bakeout cycle

Time

2nd full cycle to get comparative measurements

Spectrum at RT between 1st and 2nd cycle

SPSU meeting 4th of August

TIDVG study

RGA spectrum @ 150°C

RGA spectrum @ 200°C

RGA spectrum @ 250°C

SPSU meeting 4th of August

TIDVG study

Selective heating of graphite and tungsten

RGA spectrum with graphite @ 250°C; rest @ 150°C

RGA spectrum with Tungsten @ 230°C; rest @ 150°C

Conclusion – Outgassing issue

- Graphite still shows a lot of outgassing after vacuum firing before assembly, and an intense bake out (25 days at 150°C+)
- The present hydrocarbons indicates that the vacuum firing done before assembly was not sufficient!
- Hydrocarbons can not be removed by baking out the graphite in the dump (temperature limitation of the copper core)
- Tungsten seems to be clean from hydrocarbons
- Still a lot of water outgassing present at high temperatures
 - Required time for a water bake out needs to be determined
 - Tests on diffusion coefficient of water in Graphite currently being prepared by TE/VCS Giovanna Vandoni & Florent Bouvier
- Current bakeout @ 150°C is sufficient for water

Proposed actions for dump #3

- Assuring a low outgassing rate of the graphite at high temperatures before assembling the Dump (testing!)
 - When modifying dump #3 cleaning the Graphite blocks with an long vacuum firing (1000°C+ for many hours!) to reduce hydrocarbons
- long bakeout for removing the water (on surface)
- Keep contact with atmosphere as short as possible!
 - Isolating valves for the dump?

Outline

- A brief overview The TIDVG & previous study
- Vacuum outgassing problems during operation
- Performance with current proton beams
- Performance with PS2 beams
- A slightly modified design
- Conclusion and different scenarios

Previous simulations conducted by Mattias Gebrugge

- The goal was to determine the temperature in the materials after a few consecutive dumps
- This information was used to assess if the bakeout temperature (150°C) is sufficient

 The new studies are to determine the limits of the dump during operation!

Determining the performance of the TIDVG

- 3D thermal simulation in ANSYS
- Energy deposition in FLUKA (supplied by Roberto Rocca)
- Beam characteristics & dumping patterns

	LHC ultimate	CNGS	PS2_LHC	PS2_CNGS
Total intensity	4.90E+13	4.80E+13	7.00E+13	1.20E+14
Energy [GeV]	450	400	450	400
Repetition time				
[sec]	21.8	6	4.8	4.8

Simulations

- 4 extreme scenarios
 - Continuous CNGS-Beam dumping
 - Continuous LHC-Beam dumping
 - Continuous PS2_CNGS-Beam dumping
 - Continuous PS2_LHC-Beam dumping
 - Each one followed by 5 minutes cooling
- Comparison of maximum protons/second to reach steady state
- Limit: Temperature of the Antico (aluminum) should not exceed 450°C!

Continuous CNGS-Beam dumping maximum 23 cycles

CNGS - old design

Continuous PS2_CNGS-Beam dumping maximum 3 cycles

PS2_CNGS - old design

Limits for dumping

	Number of cycles followed by 5 minutes of cooling	
Beam	Present design	
CNGS	23	
LHC	steady state	
PS2_CNGS	3	
PS2_LHC	4	

	Maximum Protons/Second to reach steady state	
Beam	Present design	
CNGS (400GeV)	4.51E+12	
LHC (450 GeV)	3.93E+12	

400 GeV steady state dumping

450 GeV steady state dumping

Outline

- A brief overview The TIDVG & previous study
- Vacuum outgassing problems during operation
- Performance with current proton beams
- Performance with PS2 beams
- A slightly modified design
- Conclusion and different scenarios

Dump #3 modifications

- Possible modifications that can be done with a reasonable effort when modifying dump #3 to get it ready as spare.
 - Changing composition to:
 - 270cm Graphite (+20)
 - 80 cm Antico (-20)
 - 50cm Copper
 - 30 cm Tungsten

Drawback:

Loss in cleaning efficiency

Particle flux at the end of the dump

Neutrons: +8% Photons: +11%

Charged particles: +10%

But, currently the dump (not including the shielding) absorbs only 155 GeV/p.

Possible improvements

	Number of cyc by 5 minutes		
Beam	Present design	Modification	gain
CNGS	23	38	165.2%
LHC	steady state	steady state	-
PS2_CNGS	3	4	133.3%
PS2_LHC	4	6	150.0%

400 GeV steady state dumping

450 GeV steady state dumping

Limitations

	Maximum Proto reach stea		
Beam	Present design	Modification	gain
CNGS (400GeV)	4.51E+12	5.44E+12	120.6%
LHC (450 GeV)	3.93E+12	4.68E+12	119.1%
	•	•	-

	LHC ultimate	CNGS	PS2_LHC	PS2_CNGS
Total intensity	4.90E+13	4.80E+13	7.00E+13	1.20E+14
Energy [GeV]	450	400	450	400
Repetition time [sec]	21.8	6	4.8	4.8

Maximum proton current for steady state operation

 CNGS
 PS2_LHC
 PS2_CNGS

 Present design
 2.71E+13
 1.89E+13
 2.16E+13

 Modification
 3.26E+13
 2.25E+13
 2.61E+13

 Repetition time
 6
 4.8
 4.8

Number of system followed

Maximum dump intensity 4.5e+13

Any operation below those limits is OK!

	by 5 minutes of cooling		
Beam	Present design	Modification	
CNGS	23	38	
LHC	steady state	steady state	
PS2_CNGS	3	4	
PS2_LHC	4	6	

Any operation above those limits needs to respect the maximum number of consecutive cycles + cool down time!

Outline

- A brief overview The TIDVG & previous study
- Vacuum outgassing problems during operation
- Performance with current proton beams
- Performance with PS2 beams
- A slightly modified design
- Conclusion and different scenarios

Conclusion Short-term scenario

- Dump #3 needs to be modified to serve as spare
 - Removal of foil and better Ti coating
 - Intense vacuum firing to clean the graphite
 - Long bakeout in the lab to remove water
 - → improving the current Vacuum issues
- Optional:
 - Slight design modification to gain better performance

This can be achieved short-term

Conclusion Long-term scenario

- A better performance of the dump needs a completely new design
 - This can be achieved with better cleaning efficiency. (TDI for LHC absorbs 200 GeV/proton with the same dimensions)
- About 3 years needed for design and construction
- Costs 0.5-1 MCHF/piece

Further thoughts

- This study was only for the TIDVG!
- Other beam intercepting devices in the SPS
 - TIDH (low energy)
 - TIDP (momentum)
 - TBSJ (injection beam stopper)
 - TBSM (first turn beam stopper)
- Designed in the 70s
- Definite operations limits are not known!

The End

