FT/CNGS beam in the SPS now and with PS2

SPSU Meeting, July 5, 2007

Based on Report CERN-AB-2007-013-PAF, "Analysis of the maximum potential proton flux to CNGS", M. Meddahi and E. Shaposhnikova

Acknowledgments: PAF Working Group, T. Linnecar

Maximum proton flux to CNGS

Flux: $n_{cycle} \times$ availability $\times N_{tot}$

- Total beam intensity per SPS cycle N_{tot} ?
- Beam availability $\sim 80\%$
- Number of cycles *n_{cycle}*

 $n_{cycle} = n_{days} imes 24 imes 3600 imes S/T_{cycle}$

- Number of days of operation $n_{days} = 200$
- $T_{cycle} = 6 \text{ s}, 7.2 \text{ s} \text{ and } 4.8 \text{ s}$
- Beam sharing S (different SPS users)

For S = 0.5 and $T_{cycle} = 6 \text{ s} \rightarrow n_{cycle} = 1.44 \times 10^6$ and for 80% availability, $N_{tot} = 4.8 \times 10^{13} \rightarrow \text{flux} = 5.5 \times 10^{19}$ (nominal CNGS - 4.5×10^{19} pot/year for 5 years)

Number of cycles for CNGS

Beam sharing

(updated analysis of HIPWG, 2004)

- 1. CNGS-FT mode 85% (80%) of the SPS beam time: 1FT (16.8 s) + 3 CNGS (18 s) + MD (4.8 s) $\rightarrow S_1 = 0.45$
- 2. LHC set-up mode 10% of the SPS beam time: pilot (7.2 s) + 2 CNGS (12 s) $\rightarrow S_2 = 0.625$
- 3. LHC filling mode 5% (10%) $\rightarrow S_3 = 0$
- SPS users: CNGS, LHC, FT and MD

 $S = 0.85 \cdot 0.45 + 0.1 \cdot 0.625 = 0.445(0.425) \rightarrow S = 0.45$

• SPS users: CNGS and LHC

 $S = 0.85 + 0.1 \cdot 0.625 = 0.9125(0.8625) \rightarrow S = 0.85$

Present situation:

- PS: 1.2 s basic period,
 - 1.2 s CNGS cycle @14 GeV/c: below the SPS γ_t
 - 3.6 s LHC cycle @26 GeV/c: above the SPS γ_t
- SPS: 14 GeV/c \rightarrow 400 GeV/c, 1.2 s flat bottom,

 $t_{acc} = 3$ s and $T_{cycle} = 6$ s

With PS2: no 1.2 s flat bottom in the SPS \rightarrow 6 - 1.2 = 4.8 s? but FT users in the PS2 (slow extraction \sim 1.2 s - PS2 WG)

Different possible supercycles in the PS2:

- (50 & 50) GeV/c: (1.2+1.2) s + (1.2+1.2+1.2) s = 6 s
- (26 & 50) GeV/c: (0.6+0.6) s + (1.2+1.2+1.2) s = 4.8 s
- (50 & 26) GeV/c: (1.2+1.2) s + (0.6+1.2+0.6) s = 4.8 s

CNGS cycle length

Maximum intensity in the SPS

 $N_{tot} = ?$

- nominal CNGS: $N_{tot} = 4.8 \times 10^{13} \text{ (record 1997)}$
- new record (G. Arduini et al., 2004):
 - 5.7×10^{13} above transition (early dump due to losses)
 - 5.3 \times 10¹³ at 400 GeV/c
- $N_{tot} = 7 \times 10^{13}$ maximum from PS with a double batch injection $\rightarrow T_{cycle} = 7.2$ s - ultimate CNGS
- $N_{tot} = 1 \times 10^{14}$ maximum from PS2 (PS2 WG)
- CNGS target: $N < 3.5 \times 10^{13}$ per extraction

Different SPS filling schemes (1/4)

• **PS**:

 $SPS = 11 \times PS: 2 \times 10.5 \ \mu s \rightarrow 21/23 = 0.913 \ SPS$ filled

• PS2 (with 5-turn extraction, kicker gap of 1.1 μ s and intensity limitation for CNGS target) SPS = 5.5 x PS2: 5 x 3.1 μ s \rightarrow 15.5/23 = 0.67 SPS filled SPS = 5.0 x PS2: 5 x 3.5 μ s \rightarrow 17.5/23 = 0.76 SPS filled

SPS = 5.13 x PS2: 5 x 3.38 μ s \rightarrow 16.9/23 = 0.735 SPS filled (5.133=77/15, *R. Garoby, AB-Note-2007-020 BI*)

Different SPS filling schemes (2/4)

Additional considerations after discussion at APC on 8.06.2007:

- The PS2 extraction kicker rise time is only 150 ns (M. Barnes et al, AB-Note-2007-001)
- With the CNGS target which can stand whole intensity
- (1) For SPS = $(5.25=21/4) \times PS2 \rightarrow 21.15/23 = 0.92$ SPS filled $(23/5.25 - 0.15 = 4.23, 5 \times 4.23=21.15) \rightarrow t_{gap} = 1.25 \ \mu s$
- (2) For $SPS = 5.13 \times PS2$ (present option)
 - 21.67/23 = 0.94 SPS filled $\rightarrow t_{gap} = 0.73 \ \mu s$
 - 19.8/23 = 0.86 SPS filled with 0.5 μ s gap in PS2 $\rightarrow t_{gap} = 1.1 \ \mu$ s
 - e-cloud with smaller gaps and lower bunch intensity?

Different SPS filling schemes (3/4)

Consequences for the FT beam

Present situation:

- total intensity $\sim 3.2 \times 10^{13}$, flat top: 4.8 s
- two beam gaps of 1 μ s
 - after RF gymnastics (jump to unstable phase) filled from both sides during $\sim 0.3~{\rm s}$

- still 1 s of the spill is practically lost due to the residual beam structure at the revolution (43 kHz) and RF (200 MHz) frequencies

- recent proposal (G. Arduini et al): 9.6 s long flat top with twice more intensity for COMPASS and 60% more for the North Area

In future beam gap t_{gap} with PS2 =

- $SPS/5.5 \rightarrow 23 \times (1 5/5.5) = 2.1 \ \mu s, \ t_{gap} = 2.25 \ \mu s$
- $SPS/5.13 \rightarrow 23 \times (1 5/5.13) = 0.6 \ \mu s, \ t_{gap} = 0.73 \ \mu s$
- $SPS/5.25 \rightarrow 23 \times (1 5/5.25) = 1.1 \ \mu s, \ t_{gap} = 1.25 \ \mu s$

Different SPS filling schemes (4/4)

- PS: 5 ns bunch spacing in the SPS (4210 bunches)
- PS2: 25 ns bunch spacing in the SPS (620-700 bunches)

N_{tot}	$N_b/10^{10} { m ~for~SPS~size} =$					
$[10^{13}]$	$11 \mathrm{xPS}$	$5.5 \mathrm{xPS2}$	5xPS2	$5.14 \mathrm{xPS2}$		
4.8	1.14	7.74	6.86	7.1		
7.0	1.66	11.3	10.0	10.3		
10.0	2.38	16.1	14.3	14.8		

 \Rightarrow Single bunch intensity is below the ultimate LHC

Main intensity limitations

- e-cloud
- Equipment heating (MKE, HOM couplers, beam instrumentation...)
- Beam losses
- Transverse damper
- RF voltage and power, beam control
- ...

- Beam stability and sufficient bucket area for controlled emittance blow-up: scaling from the LHC beam, $\varepsilon_L \propto \sqrt{N}$
- Maximum available voltage in the 200 MHz RF system: 7.5 (8) MV
- Maximum available **RF** power in one 200 MHz TW cavity in the pulsed mode
 - 700 kW for full SPS ring
 - 1.4 MW for 1/2 ring not tested experimentally
 - \sim 1 MW (for full ring) with serious upgrade

Main RF limitations

Ν	I_{rf} [A] for SPS =					
$[10^{13}]$	$11 \mathrm{xPS}$	$5.5 \mathrm{xPS2}$	$5 \mathrm{xPS2}$	$5.13 \mathrm{xPS2}$		
4.8	0.73	1.0	0.88	0.91		
7.0	1.06	1.45	1.28	1.32		
10.0	1.52	2.07	1.83	1.89		

RF current used for **RF** power estimations

Nominal cycle (1/2)

Synchronous momentum

Nominal cycle (2/2)

Short cycle from 26 GeV/c (1/5)

Synchronous momentum

Short cycle from 26 GeV/c (2/5)

SPS = 5.5 PS2

Short cycle from 26 GeV/c (3/5)

SPS = 5.5 PS2

Short cycle from 26 GeV/c (4/5)

SPS = 5.0 PS2

Short cycle from 26 GeV/c (5/5)

SPS = 5.0 PS2

Long cycle from 50 GeV/c (1/3)

Synchronous momentum

Long cycle from 50 GeV/c (2/3)

SPS = 5.0 PS2

Long cycle from 50 GeV/c (3/3)

SPS = 5.0 PS2

Summary for RF limitations

itr voltage [wiv] for different t_{acc}							
	SPS = 11 PS	${ m SPS}\simeq 5~{ m PS2}$					
	3.0 s	3.0 s	3.0 s	4.2 s			
$\geq 250~{ m GeV/c}$	7.5	8.0	7.5	6.0			
maximum	7.6	11.0	10.5	7.0			

RE voltage [MV] for different t

RF power per cavity [MW] for different t_{acc}

Ν	SPS = 11 PS	SPS = 5.5 PS2	$\mathrm{SPS}\simeq 5\ \mathrm{PS2}$	
$[10^{13}]$	3.0 s	3.0 s	3.0 s	4.2 s
4.8	0.65	0.9	0.75	0.5
7.0	0.85	1.15	1.0	0.7
10.0		1.6	1.4	1.1

To provide the same number of pot/year with 6 s cycle ($t_{acc} = 4.2$) s the SPS should run at 25% higher intensity than with 4.8 s cycle

- Beam loss is at the moment the most critical issue for CNGS beam due to
 - induced radiation (even for nominal intensity)
 - eventual lack of protons (ultimate intensity)
- To provide nominal CNGS beam intensity ~ 3 times more particles needed from Linac.
- Radiological impact increases with number of particle lost and their energy

 \Rightarrow losses in the PS and especially in the SPS are more critical \Rightarrow to keep absolute losses constant, relative losses should decrease with intensity

 \ominus But... relative losses are increasing with intensity (collective effects, beam size ...)

Relative beam loss as a function of the SPS intensity

Beam		\mathbf{FT}	CNGS		
		2004	nomin.	record	ultimate
Intensity at SPS	$[10^{13}]$	2.6	4.4	5.3	7.0
extraction					
Relative loss	[%]	16	24	38	< 20

Maximum proton flux to the CNGS

Pot per year $[10^{19}]$ for 200 days of operation with 80% machine availability for beam sharing of 0.45/0.85

cycle length	6 s	7.2 s	4.8 s	6 s	
acceleration time	3 s	3 s	3 s	4.2 s	
injection momentum GeV/c		14	14	26	50
situation	$egin{array}{c} N_{tot} \ 10^{13} \end{array}$				
PS + improvements	4.8	5.0/9.4			
in the SPS	5.7	5.9/11.1			
PS + improvements	7.0		6/11.4		
+ SPS RF upgrade					
PS2	7.0				7.2/13.7
PS2 + RF upgrade	7.0			9.0/17.1	
PS2 + RF upgrade +	10.0				10.3/19.6
new CNGS equipment					
PS2 + new SPS RF + 10.0				12.9/24.5	
new CNGS equipment					

- Future CNGS/FT beam will be injected above transition
- Beam structure will be similar to the LHC beam with maximum bunch intensity below ultimate LHC
- There is an increase in local density with a new filling scheme for the CNGS beam (for the same total intensity)
- For the FT beam (slow extraction) optimum PS2 size is SPS/5.13
- For the CNGS beam (fast extraction) optimum PS2 size is
 - SPS/5.13 with persent limitations to intensity on target and SPS kicker rise time as well as with new requirements (whole intensity on target and short kicker rise time)

- SPS/5.25 only if target limitation can be changed but kicker rise time not

• Any other ideas?..