A Wideband Feedback Model for HeadTail

Kevin Li¹, W. Höfle¹, C. Rivetta², G, Rumolo¹ on behalf of the SPS-LIU and USLARP teams

¹ European Organization for Nuclear Research ² SLAC National Accelerator Laboratory

Overview

- The feedback model in HeadTail
- Model parameters
- Some applications
 - Centroid motion
 - ECI
 - TMCI
 - Noise

Problems, open questions and future plans

The HeadTail feedback model

The HeadTail feedback model

The HeadTail feedback model

 V_{c1}

V_{c2}

G

 $\Delta p_1 \Delta p_2 \Delta p_{Nsl}$

Ampl.

Kicker

Feedback system - specifications

Y1 Y2 YNSI

 V_{in1}

V_{in2}

Receiver

FIR

FIR

FIR

- 5 tap delay
- FIR transfer functions (left)
- Kicker transfer functions (right)

Model parameters

Momentum	26 GeV/c	Shunt impedance	15 MΩ
Emittances [ɛx, ɛy, ɛz]	2.8, 2.8 um, 0.527 eV s	Resonance frequency	1.3 GHz
Bunch length [σz]	0.8 ns		
Beta functions [βx , βy]	42, 42 m		
Tunes [Qx, Qy, Qz]	26.13, 26.185, 0.00587644		
Chromaticities [Q'x, Q'y]	0, 0		

Intensity	1.15e11	E-cloud regions	Dipole magnets
Cloud density	6e11 m ⁻³		

Centroid motion

Centroid motion – gain scan

- Bandwidths:
 200MHz, 500MHz, 700MHz, 1GHz
- Perturbation: 2mm initial vertical offset → monitor bunch response
- For high gains, the limited (200MHz) bandwidth makes the system become unstable
- For all cases, the bunch response (centroid motion) to the initial perturbation is similar → the systems perform equally well

ERN

Electron cloud instabilities

ECI threshold

- The instability threshold is around $\rho_{_{\rm e}} \approx$ 4e11 m⁻³
- Unstable modes are {0, -1, -2}

Intra-bunch – $\rho_e \approx 6e11 \text{ m}^{-3}$ – gain scan

- Perturbation: electron cloud
- Bandwidths:
 200MHz, 500MHz,
 700MHz, 1GHz
- For high gains, the limited (200MHz) bandwidth makes the system become unstable
- A gain of 6e-3 appears to damp the ECI

BE Beams Department | Accelerators & Beams Physics

$500MHz - \rho_e \approx 6e11 \text{ m}^{-3}$

• Clear damping of the coherent motion

Transverse mode coupling instabilities

TMCI threshold

 Broad band impedance model used

ERN

Scanning the gains

Scanning the gains - observations

- Wider band \rightarrow less gain for stabilization
- Wider band → less gain acceptance seems to be in contradiction to earlier observations and to reduced model

- Perhaps an issue with the phase response?
- Further studies needed!

Noise and saturation

Saturation maps – 100 um – 200 MHz

Saturation level: 4e-5 eV m / s 2e-4 eV m / s

CERN

0.00020

0.00016 Kick strength [eV s m 0.000012 0.00008 m

0.00004

0.00000

1.0

0.8

0.6

Saturation maps – 100 um – 200 MHz

Density scan at gain 0

2e-4 eV m / s

Saturation maps – 100 um – 200 MHz

Density scan at gain 0.5

2e-4 eV m / s

Saturation maps – 100 um – 200 MHz

Gain scan at density 1e12

2e-4 eV m / s

ERN

Saturation maps – 100 um – 500 MHz

Saturation level: 4e-5 eV m / s 2e-4 eV m / s

Saturation maps – 100 um – 1 GHz

Saturation level: 4e-5 eV m / s 2e-4 eV m / s

Observations

Observations

Observations

Scale gain

Open questions

Q20 optics – longitudinal motion

σΖ	0.23975
σρ	0.0020126
εz	0.527 eV s
Qs	0.00587644
V	2 MV

$$\frac{|\eta| R\sigma_{\delta}}{Q_s \sigma_z} = 1$$

$$\varepsilon_z = 4\pi\sigma_z\sigma_p$$

$$Qs = \sqrt{\frac{\eta V h}{2\pi E}}$$

- How do we create matched initial distributions?
- How do we treat additional harmonic RF systems?
- What are the relevant parameters?

Open questions

Longitudinal motion

- How do we create matched initial distributions?
- How do we treat additional harmonic RF systems?
- What are the relevant parameters?

Open questions

Longitudinal motion

- How do we create matched initial distributions?
- How do we treat additional harmonic RF systems?
- What are the relevant parameters?

Outlook

• New parameter table

Momentum	26 GeV/c
Emittances [ɛx, ɛy, ɛz]	2.5, 2.5 um, 0.5 eV s
Bunch length [σz]	0.77 ns
Beta functions [βx , βy]	54.6, 54.6 m
Tunes [Qx, Qy, Qz]	20.13, 20.18, 0.017
Chromaticities [Q'x, Q'y]	0, 0
Momentum compaction	0.00308642
V	5.75 MV

Conclusions

- A reduced model should help understanding the coupled dynamic systems
- ECI can be damped using feedback systems beyond 500 MHz
- TMCI seems to be easily damped using a 200 MHz feedback system
- Saturation can be investigated by means of saturation maps
- A minimum kicker strength of 4e-5 eV m / s is desired for effective damping

• Kicker signal (200 MHz, density 1e12, gain 0.1)

- Kicker signal
- Capture maximum kicker strength

- Kicker signal
- Capture maximum kicker strength
- Repeat for a series of cloud densities, each, for a series of gains and plot each point over the cloud density – gain – plane

Capture maximum kicker strength

ÉRN

- Repeat for a series of cloud densities, each, for a series of gains and plot each point over the cloud density – gain – plane
- Cut resulting graph at saturation level

- Repeat for a series of cloud densities, each, for a series of gains and plot each point over the cloud density – gain – plane
- Cut resulting graph at saturation level

ERN

• Conservative approach but allows for wide range parameter studies to obtain a big picture