Lessons from SPS studies in 2010

E. Shaposhnikova

Chamonix’11

session 09: LHC injectors upgrade
Outline

- Review of the SPS MD studies in 2010
- Expectations for possible SPS upgrades

Acknowledgments:

LIU/TF: R. Garoby, B. Goddard, V. Mertens

TE/ABT: M. Barnes, B. Balhan, R. Barlow, J. Borburgh, **BE/BI**

PS&PSB teams and OP shifts for help in MDs

28/01/2011 SPS lessons
Questions

1. Source of limitations/bottlenecks (up to ultimate intensity)

2. Possible cures and mitigation measures

3. p/b and emittance as a function of the distance between bunches today and after upgrade

4. What should be done for delivering smaller transverse emittances at ultimate beam current?
Known intensity limitations and 2010 studies

- **Single bunch**
 - TMCI (transverse mode coupling instability)
 - loss of Landau damping
 - space charge
 - longitudinal instability

- **Studies with high (twice ultimate) intensities, nominal and small transverse emittances;** $\gamma_t=22.8$ (nominal) and $\gamma_t=18$ ("low") optics

- **Multi-bunch**
 - e-cloud → talk of J.M. Jimenez
 - beam loss (many reasons)
 - longitudinal coupled bunch instabilities
 - beam loading in the 200 MHz and 800 MHz RF systems
 - heating and outgassing of machine elements, septum (ZS) sparking

- **Studies with nominal 25, 50, 75, (150) ns spaced LHC beam, ultimate (injected) 25&50 ns spaced beam**
Very high intensity single bunch

- Many parallel MD sessions (B. Salvant et al.) → TMCI
- Injected bunch:
 - intensity up to 3.5×10^{11}
 - $\varepsilon_{H/V} \sim 1.3 \, \mu m$, then 2.5 μm
 (to reduce losses and emittance blow-up in SPS)
 - $\varepsilon_L = 0.35 \, eVs$, $\tau = 3.8 \, ns$
 (nominal LHC)
- Long. instability $N > 1.4 \times 10^{11}$
- Issue with MOPOS before BI upgrade at the end of run
Transverse Mode Coupling Instability (TMCI)

- TMCI threshold \(\sim \varepsilon_L |\eta| \),
 \(\eta = 1/\gamma^2 - 1/\gamma_t^2 \)
- Cures:
 - higher chromaticity \(\xi_v \)
 - higher \(\eta \) (lower \(\gamma_t \))
 - larger \(\varepsilon_L \) (capture losses)
 - impedance reduction (if known)
 - wide-band FB (W. Hofle & LARP)

- End FB intensity \((2.25-3.3) \times 10^{11}\)
 for \(\xi_v = (0.05-0.3), \xi_H = 0.25 \)
- Emittance blow-up?

B. Salvant et al.

Threshold \(\sim 1.6 \times 10^{11} \) for \(\xi_v \sim 0 \)
(close to prediction from the SPS transverse impedance model)

28/01/2011 SPS lessons
Transverse emittance measurements in the SPS

• Measurements during the cycle and along batch(es) are essential to study origin of emittance blow-up (if any)

• Measurements with Wire Scanners (WS) in 2010:
 – Average for all bunches (no bunch-by bunch)
 – One measurement per cycle (difference between “in” & “out”)
 – First measurement at 10 ms after injection

• BI improvements for 2011 (L. Jensen):
 – new electronics for 2nd WS (linear, now broken) with possibility to gate acquisition (over 50-100 ns, as in the past)
 – cross-calibrations (WS 1&2, “in”&“out”, PS&LHC)
 – expert involvement (settings are critical) plus fellow(?)
 – BGI (rest gas) monitor – continuous beam profile measurements during cycle, average for all bunches over 20 ms
Transverse emittance vs bunch intensity for a single bunch

- Data from single bunch MDs in 2010 (C. Bhat, B. Salvant et al.,) + 50 ns beam (PS Double Batch, E. Metral et al., 2008)
- Settings optimised up to 2×10^{11}
- ξ_V in range 0.0-0.3, ξ_H=0.25

nominal int. $\epsilon_{H/V} \sim 1.2 \mu m$
ultimate int. $\epsilon_{H/V} \sim 3.0 \mu m$

Linear fit:

$H: \epsilon = -1.14 + 2.22 \left(N/10^{11} \right)$
$V: \epsilon = -1.03 + 2.17 \left(N/10^{11} \right)$

→ Emittance blow-up above space charge limit (N/ϵ=const)
SPS MDs with LHC beams in 2010 – v1.9

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Spacing</th>
<th>Max. inj. intensity</th>
<th>Comments/Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>27-29.04</td>
<td>25 ns</td>
<td>nominal</td>
<td>“scrubbing”, dedicated SC, 1-4 batches, low beam loss (5%)</td>
</tr>
<tr>
<td>22</td>
<td>02-03.06</td>
<td>25 ns</td>
<td>ultimate</td>
<td>36 h, part. dedic. SC, 1-3 batches</td>
</tr>
<tr>
<td>29</td>
<td>20-21.07</td>
<td>25 ns</td>
<td>nominal</td>
<td>practically lost</td>
</tr>
<tr>
<td>35</td>
<td>03-04.09</td>
<td>50 ns</td>
<td>ultimate</td>
<td>8 h, 4 batches</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 ns</td>
<td>nominal</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>19-20.10</td>
<td>25 ns</td>
<td>nominal</td>
<td>36-72 bunches; dedicated SC → 1-2 batches</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 ns</td>
<td>nominal</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>09.11</td>
<td>50 ns</td>
<td>nominal</td>
<td>floating MD</td>
</tr>
<tr>
<td>46</td>
<td>17-18.11</td>
<td>75 ns</td>
<td>nominal</td>
<td></td>
</tr>
</tbody>
</table>
Ultimate 25 ns beam

- Large efforts in whole inject. chain
- Up to 1.9×10^{11}/bunch injected, $\varepsilon_L \sim 0.4$ eVs, $\varepsilon_{H/V} \sim 4.5/5 \, \mu$m
- Emittance blow-up $5 \rightarrow 10 \, \mu$m (larger in H-plane and for more batches) with $\xi_{H/V} = 0.2/0.3$
- Voltage increased during cycle $0.65 \rightarrow 0.75$ eVs to reduce losses & reduced on flat top: $7.2 \rightarrow 5.5$ MV to reduce outgassing and heating in kickers
- Beam unstable longitudinally on flat bottom with 12 bunches
- 36 hours MD – stopped due to MKE heating to 70 deg

Bunch intensity on flat top decreases with number of batches:
- 1.62×10^{11} - 1 batch, 1.51×10^{11} - 3

Beam losses: 30% → 20%
Ultimate 50 ns beam

- Only 8 h MD at the end of block - in || to LHC set-up (150 ns beam)
- 1.8×10^{11}/bunch injected \rightarrow maximum 1.52×10^{11}/bunch on FT, 15% losses for ultimate intensity
- Nominal: $\varepsilon_{H/V} = 2.7/2.8 \, \mu m$ on FT
 ultimate: injected $\varepsilon_{H/V} = 3.2/3.9 \, \mu m$
- Voltage programme as for 25 ns nominal beam
- Increase in $\xi_{H/V}$ from (0.05/0.18) had no effect on losses
 \rightarrow More time for optimisation in 2011

Bunch intensity on flat top vs injected bunch intensity

Losses increase with bunch intensity

J. Muller

28/01/2011

SPS lessons
Nominal LHC beams in 2010

Transverse emittance vs bunch intensity

- Nominal 50&75 ns beam: extracted emittances determined by injected with no/small blow-up

- Nominal 25 ns beam: blow-up PS ext. $\varepsilon_{H/V} = 2.0/1.5 \, \mu m \rightarrow SPS (t=0.55 \, s) \varepsilon_{H/V} = 3.2/3.3 \, \mu m$
 flat top: $\varepsilon_{H/V} = 3.2/3.6 \, \mu m$

- Larger emittances in V-plane

→ 50 ns and 75 ns beams: one can hope to get single-bunch emittances ($\sim 3 \, \mu m$ for ultimate intensity)

25 ns beam - can hope for same after e-cloud mitigation
Transverse emittances vs bunch spacing for the same total and bunch intensities

50 ns spacing

No emittance increase with n batches, small (<10%) blow-up during the cycle

25 ns spacing

Vertical emittance increase with n batches, measurement at 0.55 s (26 GeV)
e-cloud vs bunch intensity for 25&50 ns spacing (MD w35)

- A factor 3-5 difference between 25 ns and 50 ns beams
- Some increase of e-cloud current with intensity for 50 ns beam
Nominal LHC beams: beam quality issues

- **25 ns beam**
 - low (5%) losses (with low $\xi=0.1$)
 - heating and outgassing of kickers: MKDH3, MKP and MKE - limitation for dedicated MD cycle (or dedicated LHC filling)
 - no limitations from ZS after change of settings by ABT group

- **50 ns beam**
 - beam stability issue: need of controlled emittance blow-up in addition to the 800 MHz RF
Bunch length variation on flat top: effect of beam loading in the 200 MHz RF on emittance blow-up by band-limited noise

\[
V = V_t^{200} \sin \phi + V_t^{800} \sin(4\phi + \Phi_2 + \Delta \phi_2),
\]

\[
\Delta \phi_2 = 4\Delta \phi_s \text{meas} \left(1 + \frac{4V_t^{800}}{V_t^{200}(-\cos \phi_s)}\right)
\]

T. Argyropoulos et al., HB2010
Longitudinal multi-bunch instability: 50 ns beam, 2 RF, no controlled blow-up

Short PS bunches are unstable in SPS (450 GeV/c)

Long PS bunches
Multi-bunch instability due to loss of Landau damping?

- Narrow window for the injected parameters: losses increase for longer bunches and beam is unstable for lower emittance (blow-up required for 50&75 ns beams)

\[\varepsilon = 0.46 \text{ eVs} \]

\[\text{SPS transmission decreases for larger injected } \varepsilon \]

→ loss of Landau damping due to inductive impedance (MKE)
Intensity limitations for 25 ns beam - 2010

<table>
<thead>
<tr>
<th>Intensity /bunch</th>
<th>Origin</th>
<th>Leads to</th>
<th>Present/future cures/measures</th>
</tr>
</thead>
</table>
| 0.2×10^{11} | longitudinal multi bunch instability due to loss of Landau damping (longitudinal impedance) | - beam loss during ramp
 - bunch variation on FT | (FB, FF, long. damper)
 - 800 MHz RF system
 - emit. blow-up \to RF
 - low γ_t optics |
| 0.7×10^{11} | e-cloud due to the StSt vacuum chamber ($\delta_{SEY}=2.5$, 1.3 is critical for SPS) | - dynamic pressure rise
 - transv. (V) emit. blow-up
 - instabilities
 - losses (via high chrom.) | - scrapping run ($\delta\to1.6$)
 - high chrom. (0.2/0.4)
 - transv. damper (H)
 - (50/75 ns spacing)
 - coating ($\delta\to1.0$) |
| 1.3×10^{11} | not known exactly e-cloud, impedance, space charge, beam loading | - flat bottom/capture beam loss (>5%) | - (lower chromaticity)
 - WP, RF gymnastics
 - collimation |
| 1.5×10^{11} | beam loading in 200 MHz RF system | - voltage reduction on FT
 - phase modulation | - feedback & FF
 - RF cavities shortening |
| 1.6×10^{11} | TMCI (transverse mode coupling instability) due to transverse impedance | - beam losses
 - emittance blow-up | - higher chromaticity
 - low γ_t optics
 - transverse high bw FB |

28/01/2011
SPS lessons
Low γ_t - solution for everything?

• Successful MDs with a single bunch (H. Bartosik, Y. Papaphilippou et al.): $\gamma_t = 22.8 \rightarrow 18$, increase in η: 2.86 @26 GeV/c and 1.6 @450 GeV/c

• Expected increase in beam stability for the same bunch parameters $N_{th} \sim \eta$ for TMCI (observed!) and longitudinal instabilities (to be seen in 2011)

• For the same parameters: $V \sim \eta$. Already maximum voltage (7.5 MV) is used now for extraction to LHC \rightarrow longer bunches for the same emittance and voltage \rightarrow 200 MHz RF upgrade should help

• But probably emittance blow-up for the same intensity can also be reduced: loss of Landau damping $N_{th} \sim \varepsilon^2 \eta \tau$. Since $\tau \sim (\varepsilon^2 \eta/V)^{1/4} \rightarrow \varepsilon \sim \eta^{-1/2}$ and $\tau = \text{const}$ for $V=\text{const}$

Issues:
• If LHC itself needs higher longitudinal emittances at injection
• Fast cycles in SPS

28/01/2011 SPS lessons
Some MD results for low γ_t

No TMCI up to 3.2×10^{11}

Small transverse emittances

- **FB**: no transverse blow-up for
 - $\varepsilon_{H/V} = 2.0/2.3, \ 2.6 \times 10^{11}$
 - $\varepsilon_{H/V} = 2.5/2.6, \ 3.3 \times 10^{11}$
 but too low voltage (1.8 MV) \rightarrow losses (10-15%) and longer bunch ($\sim 30\%$?)
- **Acceleration** of 2.5×10^{11}
 - 5% capture losses
 - $\varepsilon_{H/V} = 2.4/2.9$
 - $\tau = 1.5$ ns on FT
 \rightarrow Studies with nominal and ultimate LHC beams (long. beam stability)

H. Bartosik et al.

28/01/2011 SPS lessons
What is the SPS space charge limit at 26 GeV/c?

Single bunch data with nominal ($\gamma_t = 22.8$) and “low γ_t” optics ($\gamma_t = 18$)

“Low γ_t” data scaled by 30% in intensity (for low V and losses) - linear fit: $\varepsilon = 1.4 \left(N/10^{11} \right)$

→ space charge limit $\Delta Q_{sc} > \sim 0.13$
(nominal LHC beam $\Delta Q = 0.05$)

→ preliminary results, accurate measurements in 2011

28/01/2011 SPS lessons

28/01/2011
LHC beams in SPS

<table>
<thead>
<tr>
<th>Beam parameters</th>
<th>SPS @ 450 GeV/c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nom.</td>
</tr>
<tr>
<td>bunch spacing</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>max bunch intensity</td>
<td>(10^{11})</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>number of bunches</td>
<td>4x72</td>
</tr>
<tr>
<td>total intensity on FT</td>
<td>(10^{13})</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>long. emittance</td>
<td>eVs</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>norm. h/v emittance</td>
<td>μm</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* double batch injection in PS: 1.1/1.4

28/01/2011

SPS lessons
Main lessons/results from 2010

- **Nominal 25 ns** beam in good shape: low beam losses (5%) with low $\xi_v = 0.1$
- **Ultimate** (injected) beam - needs studies
 - 25 ns: large losses and emittances, instabilities
 - 50 ns: 15% losses, 1.5×10^{11}/bunch at 450 GeV/c in 4 batches
- **TMCI threshold** is at ultimate intensity (low ξ). Ultimate single bunch accelerated to 450 GeV/c with low loss and ξ_v, but with some emittance blow-up. More problems for small injected emittances.
- **New low γ_t optics**: promising results for beam stability and brightness
- **Loss of Landau damping** for small inj. long. emittances, bunch length variation on flat top after controlled emittance blow-up in 2 RF

Limitations for dedicated LHC filling/MD: MKE, MKP, MKDH3 heating/outgassing

MDs issues: transverse emittance measurements, time allocation, data analysis

28/01/2011

SPS lessons
Conclusions - Q&A

• \(p/b \) and emittance as a function of the distance between bunches today and after upgrade
 - now one can hope to get single-bunch emittances for 50&75 ns beams with 3 µm for ultimate intensity; probably less (2.5 µm) with low \(\gamma_t \) (RF voltage limit to be seen); > 4 µm for 25 ns ultimate beam
 - after upgrades (e-cloud and impedance reduction) one can hope to be at the space charge limit (≈2.5 µm for ultimate intensity) for 50&25 ns beams
• what should be done for delivering smaller transverse emittances at ultimate current?
 - studies, smaller PS beam, improvement of trans. emittance measurement
 - e-cloud mitigation, transverse impedance reduction, strong transverse FB
 - low \(\gamma_t \) optics with 200 MHz RF upgrade
Spare slides
Some data for space charge

- ppbar time - $\Delta Q = 0.07$
- Protons at 14 GeV/c (H. Burkhardt et al., PAC 2003) $\Delta Q = 0.14/0.18$ with 10% losses ($N = 1.2 \times 10^{11}$, 3 ns, $\varepsilon_{H/V} = 3.43/3.75 \, \mu m$)
- Nominal LHC bunch $\Delta Q = 0.05$, ultimate $\Delta Q = 0.07$
- 50 ns nominal intensity beam with single batch injection in PS (2008): $\varepsilon_{H/V} = 1.1/1.4 \, \mu m$ at 450 GeV/c (E. Metral) $\rightarrow \Delta Q = 0.15$
- Recent studies with high intensity single bunch (B. Salvant et al., 2010) $2.5 \times 10^{11} \rightarrow \Delta Q = 0.1$ for $\varepsilon = 3.5 \, \mu m$
- LHC ions in the SPS: $\gamma = 7.31$, $N_e = 1.5 \times 10^{10}$, (50% more than nominal), $\varepsilon = 0.5 \, \mu m$ (1/2 nominal). In DR $\Delta Q = 0.08 \rightarrow \Delta Q = 0.24...$ but with 25% losses
 \rightarrow Space charge limit alone seems to be more close to $\Delta Q = 0.15$

Interplay with other effects (multi-bunch) is probably also important
e-cloud build-up for low emittances

C. Octavio Domínguez, Giovanni Rumolo, Frank Zimmermann

Simulations with $B=0.117$ T, 50 ns beam, $SEY=1.6$, $R=0.7$
e-cloud build-up for low emittances
C. Octavio Domínguez, Giovanni Rumolo, Frank Zimmermann

Simulations with $B=2.025$ T, 50 ns beam,
SEY=1.7, R=0.7
SPS scrubbing run in 2002

First measurement in SPS 10 ms after injection - G. Arduini
Possible issues with controlled longitudinal emittance blow-up

50 ns beam

Non-uniform emittance blow-up due to beam loading in a double RF system

75 ns beam

Non-uniform emittance blow-up and beam instability (?) for short injected bunches

T. Argyropoulos et al.

28/01/2011

SPS lessons
Nominal and low γ_t optics
(H. Bartosik, Y. Papaphilippou)

- Nominal working point for LHC beams (Q26):
 $Q_x = 26.13$, $Q_y = 26.18$, $y_t = 22.8$,
 $\eta(\text{@26GeV}) = 0.63E-3$,
 maximal horizontal dispersion $\sim 4.8m$

- New working point for LHC beams (Q20):
 $Q_x = 20.13$, $Q_y = 20.18$, $y_t = 18$,
 $\eta(\text{@26GeV}) = 1.8E-3$,
 maximal horizontal dispersion $\sim 8m$