Studies of the SPS internal dump (TIDVG) for current and future proton beams

Alexander Stadler – EN/STI/TCD
SPSU Meeting
4th of August 2009
Outline

- A brief overview – The TIDVG & previous study
- Vacuum outgassing problems during operation
- Performance with current proton beams
- Performance with PS2 beams
- A slightly modified design
- Conclusion and different scenarios
Previous study

• Conducted by Mattias Genbrugge and presented to SPSU in 2008 by Yacine Kadi
 – Researching the history of the present dump design
 – Exploring causes of the outgassing issue

• This presentation
 – will follow up on the outgassing issue
 – will present the operation limits of the dump (current + PS2 beams)
The TIDVG

• The Target Internal Dump Vertical Graphite
 – For energies from 105 to 450 GeV
 – Located in LSS1
 – About 5m long; Core diameter 0.3 meters
 – Installed in cast iron shielding
The TIDVG design

• An internal beam dump
The TIDVG design

2.5m Graphite
1m Antico
0.5m copper
0.3m Tungsten

Graphite blocks:
Titanium coating +
Titanium foil

SPSU meeting 4th of August

TIDVG study
The TIDVG History

• Three Dumps Produced
 – Dump #1 installed in 1999/2000
 – Foil got Damaged and was blocking the aperture
 – Dump #2 was modified (better coating – no foil)
 – Dump #1 replaced by #2 in 2006/2007

 – Dump #3 was not modified (not ready as spare at the moment)
 – Dump #1 Out of order – In Storage (radioactive)
Outline

• A brief overview – The TIDVG & previous study
• **Vacuum outgassing problems during operation**
• Performance with current proton beams
• Performance with PS2 beams
• A slightly modified design
• Conclusion and different scenarios
II. Operational Problems

After commissioning in March 2000:

- Pressure peaks from the moment the beam was dumped.

(Repetitive dumping of 9×10^{12} protons per cycle at 440 GeV.)

Consequence:

$=>$ Shutdown of the beam due to pressure interlock system.
Possible causes
(as presented in 2008)

• Outgassing originating from: Tungsten or Graphite blocks (Antico and copper are solid metals)

• Outgassing is driven by
 – Temperature
 – Internal concentration of pollutants

• Pressure rise due to e-clouds (presented with a ?)
 – “No proof! Only hints:”
 – “It is inconclusive until now, but it seems not very likely.”
Looking for the cause of the outgassing

• Significant steps during production and installation of the Dump:
 – Vacuum firing of the graphite (1000°C for 1h) before assembly & welding
 – Bakeout with pressurized water @ 150°C
 • After complete assembly & welding (on surface)
 • After installation (in the tunnel)
Looking for the cause of the outgassing

- **Significant observations and actions after installation**
- Dump #1 got conditioned in-situ with beam scraping during MDs
 - Rising the temperature of the Dump and causing the outgassing on purpose (beam scraping)
 - The outgassing rate of the dump got less over time
 - Every dump-cycle is improving the dump (less outgassing)
- After installation of Dump #2 the outgassing during dumps was again high.
 - Dump #2 now in use for ~2 years
Looking for the cause of the outgassing

- Performing a bakeout test in the lab to answer the questions:
 - Is the current bakeout temperature sufficient?
 - How big is the outgassing due to high temperatures?
 - Outgassing of water and/or hydrocarbons?
 - Which material (Graphite or Tungsten) is the origin?

Tests performed with support from TS/VSC for setting up the vacuum & bakeout equipment.
Bakeout test on Dump #3

Recording:
- Pressure
- Gas composition
- Temperature (in the vacuum directly on the blocks)

SPSU meeting 4th of August

TIDVG study
Bakeout test on Dump #3

• Initial conditions:
 – Dump was stored under gas atmosphere (like a proper spare, although not ready to use as spare yet)
 – Dump got opened up and exposed to atmosphere for several months to get a full absorption of water
1st long Bakeout cycle

SPSU meeting 4th of August
TIDVG study
Slide 16
2nd full cycle to get comparative measurements
Spectrum at RT between 1st and 2nd cycle

Pressure 1.1E-8 mbar
RGA spectrum @ 150°C

Temperatures in Celsius
Graphite: 147
Antico: 147
Copper: 143
Tungsten: 140
Copper core: 149

Pressure 4.0E-7 mbar

H2O

CxHx

SPSU meeting 4th of August
TIDVG study
RGA spectrum @ 200°C

Temperatures in Celsius
Graphite: 193
Antico: 194
Copper: 187
Tungsten: 183
Copper core: 196

Pressure 2.1E-6 mbar

H2O

CxHx

SPSU meeting 4th of August
TIDVG study
RGA spectrum @ 250°C

Temperatures in Celsius
Graphite: 246
Antico: 244
Copper: 238
Tungsten: 230
Copper core: 245

Pressure 1.7E-5 mbar

H2O

CxHx

SPSU meeting 4th of August

TIDVG study

Slide 21
Selective heating of graphite and tungsten

Tungsten Copper Antico Graphite
RGA spectrum with graphite @ 250°C; rest @ 150°C
RGA spectrum with Tungsten @ 230°C; rest @ 150°C

Pressure 2.5E-6 mbar

SPSU meeting 4th of August
TIDVG study
Conclusion – Outgassing issue

- Graphite still shows a lot of outgassing after vacuum firing before assembly, and an intense bake out (25 days at 150°C+)
- The present hydrocarbons indicates that the vacuum firing done before assembly was not sufficient!
- Hydrocarbons can not be removed by baking out the graphite in the dump (temperature limitation of the copper core)
- Tungsten seems to be clean from hydrocarbons
- Still a lot of water outgassing present at high temperatures
 - Required time for a water bake out needs to be determined
 - Tests on diffusion coefficient of water in Graphite currently being prepared by TE/VCS Giovanna Vandoni & Florent Bouvier
- Current bakeout @ 150°C is sufficient for water
Proposed actions for dump #3

• Assuring a low outgassing rate of the graphite at high temperatures before assembling the Dump (testing !)
 – When modifying dump #3 cleaning the Graphite blocks with an long vacuum firing (1000°C+ for many hours!) to reduce hydrocarbons

• long bakeout for removing the water (on surface)

• Keep contact with atmosphere as short as possible!
 – Isolating valves for the dump?
Outline

• A brief overview – The TIDVG & previous study
• Vacuum outgassing problems during operation
• **Performance with current proton beams**
• **Performance with PS2 beams**
• A slightly modified design
• Conclusion and different scenarios
Previous simulations conducted by Mattias Gebrugge

- The goal was to determine the temperature in the materials after a few consecutive dumps
- This information was used to assess if the bakeout temperature (150°C) is sufficient

- The new studies are to determine the limits of the dump during operation!
Determining the performance of the TIDVG

- 3D thermal simulation in ANSYS
- Energy deposition in FLUKA (supplied by Roberto Rocca)
- Beam characteristics & dumping patterns

<table>
<thead>
<tr>
<th></th>
<th>LHC ultimate</th>
<th>CNGS</th>
<th>PS2_LHC</th>
<th>PS2_CNGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total intensity</td>
<td>4.90E+13</td>
<td>4.80E+13</td>
<td>7.00E+13</td>
<td>1.20E+14</td>
</tr>
<tr>
<td>Energy [GeV]</td>
<td>450</td>
<td>400</td>
<td>450</td>
<td>400</td>
</tr>
<tr>
<td>Repetition time [sec]</td>
<td>21.8</td>
<td>6</td>
<td>4.8</td>
<td>4.8</td>
</tr>
</tbody>
</table>
Simulations

• 4 extreme scenarios
 – Continuous CNGS-Beam dumping
 – Continuous LHC-Beam dumping
 – Continuous PS2_CNGS-Beam dumping
 – Continuous PS2_LHC-Beam dumping
 – Each one followed by 5 minutes cooling
• Comparison of maximum protons/second to reach steady state
• Limit: Temperature of the Antico (aluminum) should not exceed 450°C!
Continuous CNGS-Beam dumping maximum 23 cycles

CNGS - old design

Temperature [°C] vs Time [s]

- Copper_core
- Graphite
- Antico
- Copper_block
- Tungsten
- Water

SPSU meeting 4th of August

TIDVG study

Slide 31
Continuous PS2_CNGS-Beam dumping maximum 3 cycles

PS2_CNGS - old design

SPSU meeting 4th of August

TIDVG study

Slide 32
Limits for dumping

<table>
<thead>
<tr>
<th>Beam</th>
<th>Present design</th>
<th>Number of cycles followed by 5 minutes of cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNGS</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>LHC</td>
<td>steady state</td>
<td></td>
</tr>
<tr>
<td>PS2_CNGS</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>PS2_LHC</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beam</th>
<th>Present design</th>
<th>Maximum Protons/Second to reach steady state</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNGS (400GeV)</td>
<td></td>
<td>4.51E+12</td>
</tr>
<tr>
<td>LHC (450 GeV)</td>
<td></td>
<td>3.93E+12</td>
</tr>
</tbody>
</table>

400 GeV steady state dumping

450 GeV steady state dumping

SPSU meeting 4th of August

TIDVG study
Outline

• A brief overview – The TIDVG & previous study
• Vacuum outgassing problems during operation
• Performance with current proton beams
• Performance with PS2 beams
• A slightly modified design
• Conclusion and different scenarios
Dump #3 modifications

• Possible modifications that can be done with a reasonable effort when modifying dump #3 to get it ready as spare.

 – Changing composition to:
 • 270cm Graphite (+20)
 • 80 cm Antico (-20)
 • 50cm Copper
 • 30 cm Tungsten

 Drawback:
 Loss in cleaning efficiency

 Particle flux at the end of the dump
 Neutrons: +8%
 Photons: +11%
 Charged particles: +10%

 But, currently the dump (not including the shielding) absorbs only 155 GeV/p.
Possible improvements

Number of cycles followed by 5 minutes of cooling

<table>
<thead>
<tr>
<th>Beam</th>
<th>Present design</th>
<th>Modification</th>
<th>gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNGS</td>
<td>23</td>
<td>38</td>
<td>165.2%</td>
</tr>
<tr>
<td>LHC</td>
<td>steady state</td>
<td>steady state</td>
<td>-</td>
</tr>
<tr>
<td>PS2_CNGS</td>
<td>3</td>
<td>4</td>
<td>133.3%</td>
</tr>
<tr>
<td>PS2_LHC</td>
<td>4</td>
<td>6</td>
<td>150.0%</td>
</tr>
</tbody>
</table>

Maximum Protons/Second to reach steady state

<table>
<thead>
<tr>
<th>Beam</th>
<th>Present design</th>
<th>Modification</th>
<th>gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNGS (400GeV)</td>
<td>4.51E+12</td>
<td>5.44E+12</td>
<td>120.6%</td>
</tr>
<tr>
<td>LHC (450 GeV)</td>
<td>3.93E+12</td>
<td>4.68E+12</td>
<td>119.1%</td>
</tr>
</tbody>
</table>

Beam Present
design Modification gain
CNGS 23 38 165.2%
LHC steady state steady state -
PS2_CNGS 3 4 133.3%
PS2_LHC 4 6 150.0%

SPSU meeting 4th of August
TIDVG study

400 GeV steady state dumping

450 GeV steady state dumping

97kW
113kW

97kW
113kW

SPSU meeting 4th of August
TIDVG study

Slide 36
Limitations

Maximum Protons/Second to reach steady state

<table>
<thead>
<tr>
<th>Beam</th>
<th>Present design</th>
<th>Modification</th>
<th>gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNGS (400 GeV)</td>
<td>4.51E+12</td>
<td>5.44E+12</td>
<td>120.6%</td>
</tr>
<tr>
<td>LHC (450 GeV)</td>
<td>3.93E+12</td>
<td>4.68E+12</td>
<td>119.1%</td>
</tr>
</tbody>
</table>

Maximum proton current for steady state operation

<table>
<thead>
<tr>
<th></th>
<th>CNGS</th>
<th>PS2_LHC</th>
<th>PS2_CNGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present design</td>
<td>2.71E+13</td>
<td>1.89E+13</td>
<td>2.16E+13</td>
</tr>
<tr>
<td>Modification</td>
<td>3.26E+13</td>
<td>2.25E+13</td>
<td>2.61E+13</td>
</tr>
<tr>
<td>Repetition time [sec]</td>
<td>6</td>
<td>4.8</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Maximum dump intensity 4.5e+13

Any operation below those limits is OK!

Maximum protons/second to reach steady state

<table>
<thead>
<tr>
<th>Beam</th>
<th>LHC ultimate</th>
<th>CNGS</th>
<th>PS2_LHC</th>
<th>PS2_CNGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total intensity</td>
<td>4.90E+13</td>
<td>4.80E+13</td>
<td>7.00E+13</td>
<td>1.20E+14</td>
</tr>
<tr>
<td>Energy [GeV]</td>
<td>450</td>
<td>400</td>
<td>450</td>
<td>400</td>
</tr>
<tr>
<td>Repetition time [sec]</td>
<td>21.8</td>
<td>6</td>
<td>4.8</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Any operation above those limits needs to respect the maximum number of consecutive cycles + cool down time!

<table>
<thead>
<tr>
<th>Beam</th>
<th>Present design</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNGS</td>
<td>23</td>
<td>38</td>
</tr>
<tr>
<td>LHC</td>
<td>steady state</td>
<td>steady state</td>
</tr>
<tr>
<td>PS2_CNGS</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>PS2_LHC</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

SPSU meeting 4th of August
TIDVG study
Outline

• A brief overview – The TIDVG & previous study
• Vacuum outgassing problems during operation
• Performance with current proton beams
• Performance with PS2 beams
• A slightly modified design
• **Conclusion and different scenarios**
Conclusion
Short-term scenario

• Dump #3 needs to be modified to serve as spare
 – Removal of foil and better Ti coating
 – Intense vacuum firing to clean the graphite
 – Long bakeout in the lab to remove water
 → improving the current Vacuum issues

• Optional:
 – Slight design modification to gain better performance

This can be achieved short-term
Conclusion
Long-term scenario

• A better performance of the dump needs a completely new design
 – This can be achieved with better cleaning efficiency. (TDI for LHC absorbs 200 GeV/proton with the same dimensions)

• About 3 years needed for design and construction

• Costs 0.5-1 MCHF/piece
Further thoughts

• This study was only for the TIDVG!
• Other beam intercepting devices in the SPS
 – TIDH (low energy)
 – TIDP (momentum)
 – TBSJ (injection beam stopper)
 – TBSM (first turn beam stopper)
• Designed in the 70s
• Definite operations limits are not known!
The End