Studies with carbon coatings in the SPS - MD run, week 25

Christina Yin Vallgren
TE-VSC

30 June 2009

Overview of SPS MD runs

Overview of carbon coated liners inserted in SPS

Overview of carbon coated magnets inserted in SPS

Conclusions and Future plans
SPS scrubbing run

- Monday 15/6 (18:00) - Tuesday 16/6 (05:00) : 1-3 batches with 48 bunches
- Tuesday 16/6 (19:00) - Wednesday 17/6 (10:00): 2-3 batches with 72 bunches
- Thursday 17/6 (00:00) - Thursday 18/6 (08:30): 2-3 batches with 72 bunches, with acceleration

The nominal LHC cycle of 21.6 s.
Liners used for E-cloud monitoring

1. Stainless Steel (ref): SEMCLOUD1, channel 1-48, XSD1
2. a-C stripe (width: 40mm): SEMCLOUD1, channel 49-96, SDneg
3. a-C on Zr (rough surface): SEMCLOUD2, channel 1-48, EcEx
4. a-C (CNe13, been in SPS since last year): SEMCLOUD2, channel 49-96, XSD2

- All the tests were done in the magnets at a field of 1.2 kGauss.
- The beam energy in the scrubbing run was 450 GeV/c
Carbon Coatings

- a-C stripe/CNe32 - width 40 mm

Previous experiment (2008) in C-magnet with StSt reference sample
Carbon Coatings

- a-C/Zr: CNeZr run 10 Rough surface.
- a-C: CNe13, been in SPS since last year.
Results from FBCT

4 batches with acceleration

3 batches with 48 bunches
Pressure reading before the MD run (Background pressure). The pressure between the two coated magnet is twice higher than the one between the uncoated magnets.
P between the coated magnets is twice higher than P between the uncoated magnets.

Pressure rise after the injection of the beam:

\[P - P(\text{background}) = \Delta p \]

\[\Delta p\ (\text{uncoated}) = 2.59 \times 10^{-7} \text{mbar} \]

\[\Delta p\ (\text{coated}) = 5.03 \times 10^{-7} \text{mbar} \]
Pressure reading - Maximum of the pressures

Studies with carbon coatings in the SPS - MD run, week 25

Christina Yin Vallgren
TE-VSC

Outline
Overview of SPS MD runs
Overview of carbon coated liners inserted in SPS
Overview of carbon coated magnets inserted in SPS
Conclusions and Future plans
Non-coated and coated had the same behaviour in pressure.
Conclusions

Scrubbing Run: StSt

- \(\delta_{\text{max}} = 2.25, \text{ higher than } \delta_{\text{threshold}} = 1.3 \)
- Normalized E-Cloud Current/FBCT started at -0.35, the same as from the previous run.
- After 3 nights scrubbing, E-Cloud has been reduced by nearly 30%.
Conclusions

Scrubbing Run: StSt

- $\delta_{\text{max}} = 2.25$, higher than $\delta_{\text{threshold}} = 1.3$
- Normalized E-Cloud Current/FBCT started at -0.35, the same as from the previous run.
- After 3 nights scrubbing, E-Cloud has been reduced by nearly 30%.
Studies with carbon coatings in the SPS - MD run, week 25

Christina Yin Vallgren TE-VSC

Outline
Overview of SPS MD runs
Overview of carbon coated liners inserted in SPS
Overview of carbon coated magnets inserted in SPS
Conclusions and Future plans

Conclusions

Scrubbing Run: StSt

- $\delta_{\text{max}} = 2.25$, higher than $\delta_{\text{threshold}} = 1.3$
- Normalized E-Cloud Current/FBCT started at -0.35, the same as from the previous run.
- After 3 nights scrubbing, E-Cloud has been reduced by nearly 30%.
Conclusions

Scrubbing Run: a-C strip

- $\delta_{\text{max}} = 0.92$, lower than $\delta_{\text{threshold}} = 1.3$
- IT WORKS! BUT, the width of 40mm is a bit too low.
- It gives 350 times lower E-Cloud compared to StSt.
- After 3 nights scrubbing, E-Cloud has been reduced by nearly a factor of 2.
Conclusions

Scrubbing Run: a-C strip

- $\delta_{\text{max}} = 0.92$, lower than $\delta_{\text{threshold}} = 1.3$
- IT WORKS! BUT, the width of 40mm is a bit too low.
- It gives 350 times lower E-Cloud compared to StSt.
- After 3 nights scrubbing, E-Cloud has been reduced by nearly a factor of 2.
Conclusions

Scrubbing Run: a-C strip

- $\delta_{max} = 0.92$, lower than $\delta_{threshold} = 1.3$
- IT WORKS! BUT, the width of 40mm is a bit too low.
- It gives 350 times lower E-Cloud compared to StSt.
- After 3 nights scrubbing, E-Cloud has been reduced by nearly a factor of 2.
Conclusions

Scrubbing Run: a-C strip
- $\delta_{max} = 0.92$, lower than $\delta_{threshold} = 1.3$
- IT WORKS! BUT, the width of 40mm is a bit too low.
- It gives 350 times lower E-Cloud compared to StSt.
- After 3 nights scrubbing, E-Cloud has been reduced by nearly a factor of 2.
Conclusions

Scrubbing Run: a-C on Zr

- $\delta_{max} = 0.96$, lower than $\delta_{threshold} = 1.3$
- It started at the same level as a-C strip.
- After 3 nights scrubbing, E-Cloud has been reduced by nearly a factor of 10.
Conclusions

Scrubbing Run: a-C on Zr

- $\delta_{max} = 0.96$, lower than $\delta_{threshold} = 1.3$
- It started at the same level as a-C strip.
- After 3 nights scrubbing, E-Cloud has been reduced by nearly a factor of 10.
Scrubbing Run: a-C on Zr

- $\delta_{\text{max}} = 0.96$, lower than $\delta_{\text{threshold}} = 1.3$
- It started at the same level as a-C strip.
- After 3 nights scrubbing, E-Cloud has been reduced by nearly a factor of 10.
Scrubbing Run: a-C CNe13

- **Initial** $\delta_{max} = 1.0$
- Has been in the SPS since last year. It gives 4 times lower e-cloud from the start than the new carbon coatings.
- After 3 nights scrubbing, almost no E-Cloud effect can be detected.
Conclusions

Scrubbing Run: a-C CNe13

- **Initial** $\delta_{\text{max}} = 1.0$
- Has been in the SPS since last year. It gives 4 times lower e-cloud from the start than the new carbon coatings.
- After 3 nights scrubbing, almost no E-Cloud effect can be detected.
Conclusions

Scrubbing Run: a-C CNe13

- **Initial** $\delta_{\text{max}} = 1.0$
- Has been in the SPS since last year. It gives 4 times lower e-cloud from the start than the new carbon coatings.
- After 3 nights scrubbing, almost no E-Cloud effect can be detected.
Pressure reading in the magnets

- Before the injection of the beam, the background pressure between the coated magnets was 2 times higher than the pressure between uncoated magnets. ⇒ Due to the higher outgassing in the carbon film and shorter pumping time.

- With acceleration, the pressure between the coated magnets became as high as the pressure between the uncoated magnets.

- The gauges for measuring the pressure between two coated magnets are close to a quadrupole. ⇐ High degassing in the quadrupole? Not really comparable with the gauge we took between the two uncoated magnets.
Conclusions

Pressure reading in the magnets

- Before the injection of the beam, the background pressure between the coated magnets was 2 times higher than the pressure between uncoated magnets. ⇒ Due to the higher outgassing in the carbon film and shorter pumping time.
- With acceleration, the pressure between the coated magnets became as high as the pressure between the uncoated magnets.
- The gauges for measuring the pressure between two coated magnets are close to a quadrupole. ⇐ High degassing in the quadrupole? Not really comparable with the gauge we took between the two uncoated magnets.
Conclusions

Pressure reading in the magnets

- Before the injection of the beam, the background pressure between the coated magnets was 2 times higher than the pressure between uncoated magnets. ⇒ Due to the higher outgassing in the carbon film and shorter pumping time.

- With acceleration, the pressure between the coated magnets became as high as the pressure between the uncoated magnets.

- The gauges for measuring the pressure between two coated magnets are close to a quadrupole. ⇐ High degassing in the quadrupole? Not really comparable with the gauge we took between the two uncoated magnets.
Plans for the next MD

1. Read the pressure close to liners
2. Find a gauge between two uncoated magnets close to a quadrupole.
Studies with carbon coatings in the SPS - MD run, week 25

Christina Yin Vallgren
TE-VSC

Outline
Overview of SPS MD runs
Overview of carbon coated liners inserted in SPS
Overview of carbon coated magnets inserted in SPS
Conclusions and Future plans

Thanks a lot for your attention!

Questions???