Preliminary results of SPS MD week 22

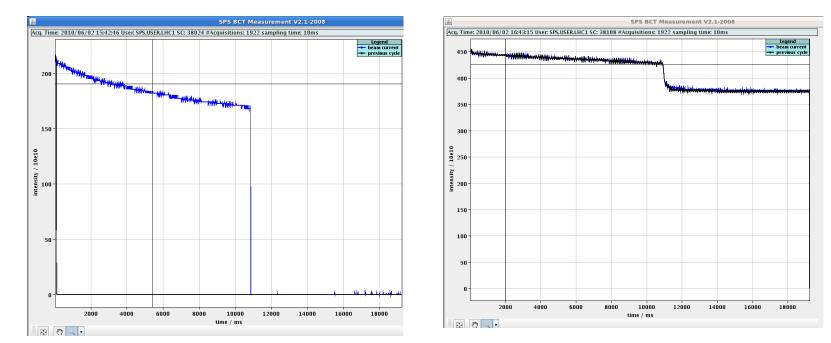
E. Shaposhnikova for SPS SG and RF team, thanks to OP team

SPSU SG, 24.06.2010

SPS beams

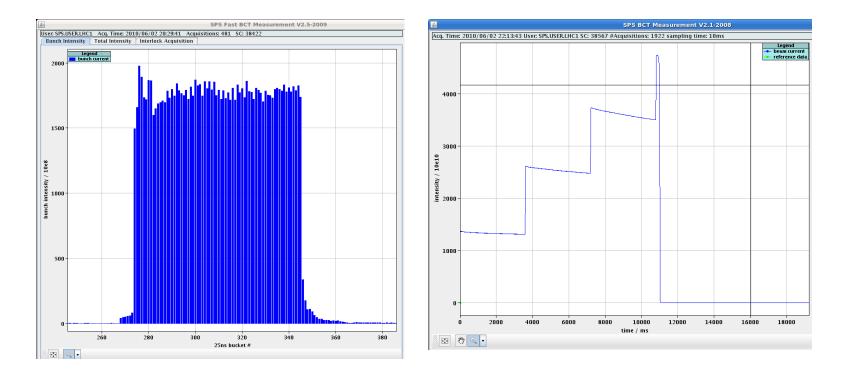
		SPS at 450 GeV/c (maximum injected minus losses)					LHC ultim./+
Beam parameters		LHC	LHC	LHC	FT	LHC	LHC
bunch spacing	ns	25	50	75	5	indiv	25
bunch intensity	1011	1.2	1.2	1.2	0.13	1.8	1.9(2.3)
number of bunches		4x72	4x36	4x24	4200	1	288
total intensity	1013	3.5	1.7	1.2	5.3	0.02	5.5(6.6)
long. emittance	eVs	0.7	0.4	0.4	0.8	0.3	<1.0
norm. h/v emittance	μm	3.6	2.0* 1.1/1.4	2.0*	8/5	0.3	3.5

* single batch injection in PS


MD on June 2-3

- Large efforts in whole injector chain, in the PSB and PS in particular (thanks!) to prepare ultimate intensity LHC beam in advance
- From 12:00 on 2.06 till 20:00 on 3.06 (too long for the same people involved) – stopped due to MKE heating to 70 deg
- Up to 1.9×10^{11} /bunch injected, longitudinal emittance 0.38–0.4 eVs, transverse emittances 5 μm
- 12, 24, 48, 72 bunches, then 1,2,3,4 batches
 - limitation from MKE \rightarrow from 2 to 1 batch (first night, at 1:00)
- Nothing broken but issues with
 - MOPOS (only in BA3, BA4 and BA6 the rest was deduced) injection oscillations
 - FBCT saturated at 1.4×10^{11}

Beam intensity and losses

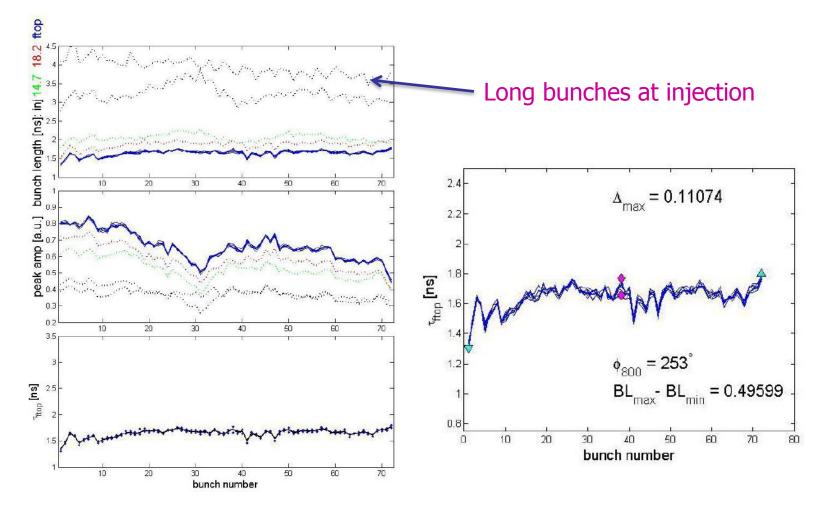

12 bunches of 1.88×10^{11}

and 24 bunches

Main observations Beam intensity and losses

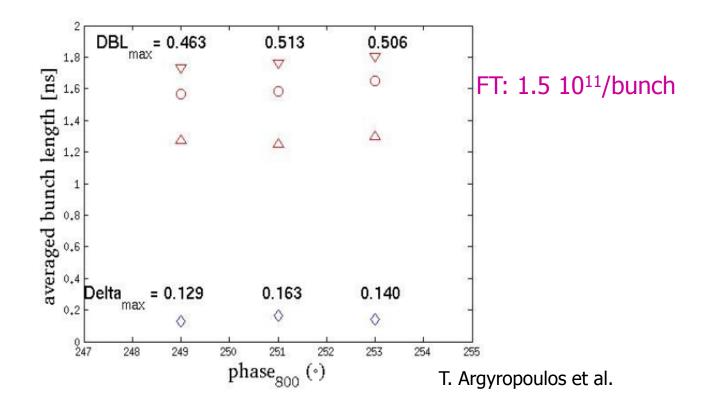
1 batch 72 bunches of 1.8×10^{11} and 4 batches...

Main observations Beam intensity and losses

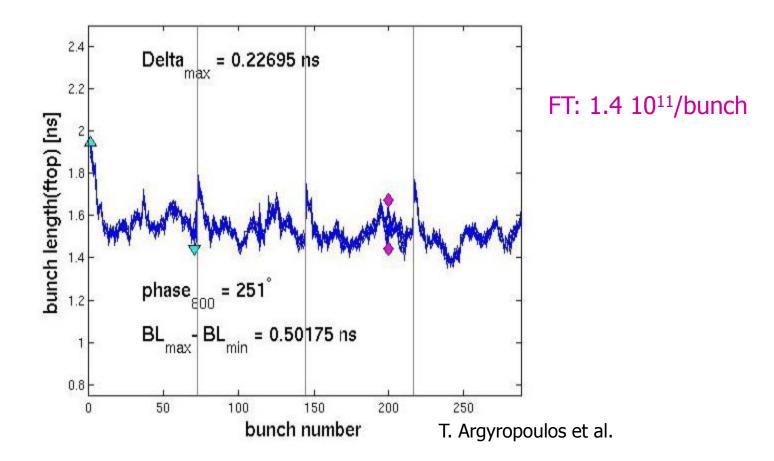

- Maximum intensity achieved at 450 GeV is 1.6x10¹¹ /bunch in one batch
- Increasing number of batches led to decrease of bunch intensity on FT (more detailed analysis is pending) with
 - 1.52x10¹¹ /bunch for 2 batches,
 - 1.48x10¹¹/bunch for 3 batches,
 - $1.4x10^{11}$ /bunch for 4 batches
- Capture losses were reduced after modification of the 200 MHz (and 800 MHz) voltage program through the cycle: from 0.65 eVs constant bucket area to 0.75 eVs, then V=5.5 MV constant (V₈₀₀=0.5 MV)
- Most of the time voltage on FT was 5.5 MV (nominal and max 7 MV)

 to reduce effects of heating and outgassing

Main observations


- Very large beam losses: injection, along the flat bottom and at the beginning of ramp (capture)
 - 30 % at the beginning of MD
 - 20 % at the end
- Chromaticity was first reduced (W. Hofle for transverse damper operation) to $\xi = 0.1$, then increased again to $\xi_H = 0.2$ and $\xi_V = 0.3$
- Transv. emittance blow-up during the ramp: $5 \rightarrow 10 \ \mu m$ (horizontal blow-up larger, also increased for more batches)
- Beam was very unstable longitudinally on flat bottom (already with 12 bunches in the ring), variation of the 800 MHz voltage on FB (and switching off) did not help
- No direct e-cloud observation (ECM) due to absence of the StSt reference liner

Bunch length during cycle and on FT: 1 batch, V_{200} =7 MV, V_{800} =0.64 MV, noise blow-up



24/06/2010

Beam stability in a double RF system: 1 batch, $V_{200}=7$ MV, $V_{800}=0.64$ MV, noise blow-up

Beam stability in a double RF system: 4 batches, V_{200} =5.5 MV, V_{800} =0.5 MV, blow-up

Future MD studies for SPS upgrade

- a-C coating: e-cloud suppression, ageing, outgassing:
 - nominal and higher intensity LHC beam, ions
- limitations with "above nominal" intensity beams
 - (beam losses, e-cloud scaling with intensity, beam quality,...)
 - multi-bunch: increase intensity in steps (more work in injectors, but...)
 - single bunch with highest possible intensity
- TMCI threshold with nominal LHC emittances (FB specification):
 - single bunch of ultimate intensity
- stability and emittance blow-up in double RF system
 - nominal and above nominal intensity LHC beam, single bunch
- impedance identification and follow-up (reference measurements)
 - nominal and lower intensity LHC beam with 25 ns, 50 ns, 75 ns and 150 ns spacing
 - single bunch with constant longitudinal parameters and variable intensity

Intensity limitations (LHC beam with 25 ns bunch spacing)

intensity /bunch	Origin	Leads to	Present/future cures/measures	
0.2x10 ¹¹	longitudinal coupled bunch instability due to longitudinal impedance	 beam loss during ramp bunch variation on FT 	(FB, FF, long. damper) - 800 MHz RF system - emit. blow-up \rightarrow RF	
0.3x10 ¹¹	e-cloud due to the StSt vacuum chamber (δ_{SEY} =2.5, 1.3 is critical for SPS)	 dynamic pressure rise transv. (V) emit. blow-up instabilities losses (via high chrom.) 	- scrubbing run $(\delta \rightarrow 1.6)$ - high chrom. $(0.2/0.4)$ - transv. damper (H) - $(50/75 \text{ ns spacing})$ - a-C coating $(\delta \rightarrow 1.0)$	
0.5x10 ¹¹	Not known exactly e-cloud + impedance (?)	- flat bottom/capture beam loss (10-15 %)	- (lower chromaticity) - WP, RF gymnastics - collimation	
1.5x10 ¹¹	Beam loading in 200 MHz RF system	 voltage reduction on FT bunch phase modulation 	- Feed-back & FF - RF cavities shortening	
1.6x10 ¹¹ (?)	TMCI (transverse mode coupling instability) due to transverse impedance	 beam losses emittance blow-up 	 higher chromaticity high voltage transverse high bw FB 	

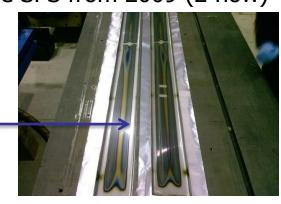
SPS limitations: impedance

- Search for unknown impedances:
 - transverse (broad-band and narrow-band): only 60% known \rightarrow TMCI
 - longitudinal (narrow-band HOMs) → coupled-bunch instability
- Follow up with beam measurements reduction of known impedances
 - MKE: serigraphy 3 done, 5 more in 3 years (2013)
 - MKDV, MKDH: complete transition pieces between magnet and tank
 - 800 MHz TW cavities: active damping with new FB and FF (2011)
 - 200 MHz TW cavities: 20% reduction due to modifications (2015)

 \rightarrow MDs with nominal and lower intensity LHC beam and single bunch

Beam loss

- Relative beam loss (flat bottom + capture) are increasing with intensity for 25 ns spaced LHC beam
 - \rightarrow The origin of beam loss
 - \rightarrow e-cloud mitigation (coating)
 - \rightarrow Impedance reduction (after identification)
 - \rightarrow Beam collimation:
 - loss control and localization
 - clean LHC beam scrapping
 - machine protection (with fast BLMs)
- \rightarrow Studies with high intensity (above nominal) LHC beam


e-cloud mitigation: a-C coating

- Experimental set-up in the SPS (4 e-cloud monitors)
 - no ageing after venting and beam exposure for lab coatings
- 3 MBBs coated using their dipole field were in the SPS from 2009 (2 now)
 - no e-cloud signal (mw transmission)
 - outgassing, small reduction in pressure rise
 - some ageing (SEY \rightarrow 1.3), 2 are still in the ring
 - insufficient quality of coating (1 MBB cut-open) _____
- Exchangeable sample with lab (good) coating:
 - ageing (SEY \rightarrow 1.5) after venting and e-cloud

\rightarrow Two options:

- (1) Improvements to coating system inside the magnet (and diagnostics) \rightarrow studies
- (2) Coating of vacuum chamber in lab \rightarrow magnet dismantling (2 MBB in W35)

If a-C coating should be implemented from 2011/2012 SD – little time for studies...

